54 research outputs found
Coexistence of superconductivity and incommensurate magnetic order
The influence of incommensurate spin density waves (SDW) on superconductivity
in unconventional superconductors is studied by means of the Bogolubov-de
Gennes (BdG) equations. Exploiting translational symmetries of a magnetically
ordered two-dimensional system we propose an approach that allows to solve the
BdG equations on much larger clusters than it is usually possible for
inhomogeneous systems. Applying this approach we demonstrate that the presence
of incommensurate spin density waves induces real-space inhomogeneity of the
superconducting order parameter even in the absence of external magnetic field.
In this case a homogeneous order parameter of the
Bardeen-Cooper-Schrieffer-type superconducting state is slightly modulated, or
equivalently, a small fraction of the charge carriers form Cooper pairs with
non-zero total momentum. However, when a sufficiently strong magnetic field is
applied, the homogeneous component of the order parameter is suppressed and the
system transits to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, where the
order parameter oscillates changing sign. We show that for s-wave pairing the
presence of external magnetic field diminishes the destructive influence of the
SDW order on superconductivity. A simple explanation of this effect is also
proposed.Comment: To appear in Phys. Rev.
Upward curvature of the upper critical field in the Boson--Fermion model
We report on a non-conventional temperature behavior of the upper critical
field () which is found for the Boson-Fermion (BF) model. We show
that the BF model properly reproduces two crucial features of the experimental
data obtained for high- superconductors: does not saturate at
low temperatures and has an upward curvature. Moreover, the calculated upper
critical field fits very well the experimental results. This agreement holds
also for overdoped compounds, where a purely bosonic approach is not
applicable.Comment: 4 pages, 3 figures, revte
Phase separation in a lattice model of a superconductor with pair hopping
We have studied the extended Hubbard model with pair hopping in the atomic
limit for arbitrary electron density and chemical potential. The Hamiltonian
considered consists of (i) the effective on-site interaction U and (ii) the
intersite charge exchange interactions I, determining the hopping of electron
pairs between nearest-neighbour sites. The model can be treated as a simple
effective model of a superconductor with very short coherence length in which
electrons are localized and only electron pairs have possibility of
transferring. The phase diagrams and thermodynamic properties of this model
have been determined within the variational approach, which treats the on-site
interaction term exactly and the intersite interactions within the mean-field
approximation. We have also obtained rigorous results for a linear chain (d=1)
in the ground state. Moreover, at T=0 some results derived within the random
phase approximation (and the spin-wave approximation) for d=2 and d=3 lattices
and within the low density expansions for d=3 lattices are presented. Our
investigation of the general case (as a function of the electron concentration
and as a function of the chemical potential) shows that, depending on the
values of interaction parameters, the system can exhibit not only the
homogeneous phases: superconducting (SS) and nonordered (NO), but also the
phase separated states (PS: SS-NO). The system considered exhibits interesting
multicritical behaviour including tricritical points.Comment: 15 pages, 9 figures; pdf-ReVTeX, final version, corrected typos;
submitted to Journal of Physics: Condensed Matte
Negativity and quantum discord in Davies environments
We investigate the time evolution of negativity and quantum discord for a
pair of non-interacting qubits with one being weakly coupled to a decohering
Davies--type Markovian environment. At initial time of preparation, the qubits
are prepared in one of the maximally entangled pure Bell states. In the
limiting case of pure decoherence (i.e. pure dephasing), both, the quantum
discord and negativity decay to zero in the long time limit. In presence of a
manifest dissipative dynamics, the entanglement negativity undergoes a sudden
death at finite time while the quantum discord relaxes continuously to zero
with increasing time. We find that in dephasing environments the decay of the
negativity is more propitious with increasing time; in contrast, the evolving
decay of the quantum discord proceeds weaker for dissipative environments.
Particularly, the slowest decay of the quantum discord emerges when the energy
relaxation time matches the dephasing time.Comment: submitted for publicatio
Strong interaction of correlated electrons with phonons: Exchange of phonon clouds by polarons
We investigate the interaction of strongly correlated electrons with phonons
in the frame of the Hubbard-Holstein model. The electron-phonon interaction is
considered to be strong and is an important parameter of the model besides the
Coulomb repulsion of electrons and band filling. This interaction with the
nondispersive optical phonons has been transformed to the problem of mobile
polarons by using the canonical transformation of Lang and Firsov. We discuss
in particular the case for which the on-site Coulomb repulsion is exactly
cancelled by the phonon-mediated attractive interaction and suggest that
polarons exchanging phonon clouds can lead to polaron pairing and
superconductivity. It is then the frequency of the collective mode of phonon
clouds being larger than the bare frequency, which determines the
superconducting transition temperature.Comment: 23 pages, Submitted to Phys. Rev.
Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase
We investigate the upper critical field in a stripe--phase and in the
presence of a phenomenological pseudogap. Our results indicate that the
formation of stripes affects the Landau orbits and results in an enhancement of
. On the other hand, phenomenologically introduced pseudogap leads to a
reduction of the upper critical field. This effect is of particular importance
when the magnitude of the gap is of the order of the superconducting transition
temperature. We have found that a suppression of the upper critical field takes
place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure
Application of an experimental design to study AISI 4340 and 300M steels electropolishing in a concentrated perchloric/acetic acid solution
The objective of this study was to assess AISI 4340 and 300 M steels electropolishing performance in aconcentrated perchloric/acetic acid electrolyte. The statistical analysis on a two-level fractional design(FFD)24-1was proposed to define an adequate tool to describe the dissolved thickness and thefinalsurface via arithmetic roughness Ra. A compromise zone was defined for each steel by considering allthe requirements for both responses of each steel: dissolved thickness between 15–17μm andarithmetic roughness criteria less than 0.06μ
Eliashberg-type equations for correlated superconductors
The derivation of the Eliashberg -- type equations for a superconductor with
strong correlations and electron--phonon interaction has been presented. The
proper account of short range Coulomb interactions results in a strongly
anisotropic equations. Possible symmetries of the order parameter include s, p
and d wave. We found the carrier concentration dependence of the coupling
constants corresponding to these symmetries. At low hole doping the d-wave
component is the largest one.Comment: RevTeX, 18 pages, 5 ps figures added at the end of source file, to be
published in Phys.Rev. B, contact: [email protected]
Upper critical field calculations for the high critical temperature superconductors considering inhomogeneities
We perform calculations to obtain the curve of high temperature
superconductors (HTSC). We consider explicitly the fact that the HTSC possess
intrinsic inhomogeneities by taking into account a non uniform charge density
. The transition to a coherent superconducting phase at a critical
temperature corresponds to a percolation threshold among different
superconducting regions, each one characterized by a given .
Within this model we calculate the upper critical field by means of an
average linearized Ginzburg-Landau (GL) equation to take into account the
distribution of local superconducting temperatures . This
approach explains some of the anomalies associated with and why
several properties like the Meissner and Nernst effects are detected at
temperatures much higher than .Comment: Latex text, add reference
Electron transport across a quantum wire in the presence of electron leakage to a substrate
We investigate electron transport through a mono-atomic wire which is tunnel
coupled to two electrodes and also to the underlying substrate. The setup is
modeled by a tight-binding Hamiltonian and can be realized with a scanning
tunnel microscope (STM). The transmission of the wire is obtained from the
corresponding Green's function. If the wire is scanned by the contacting STM
tip, the conductance as a function of the tip position exhibits oscillations
which may change significantly upon increasing the number of wire atoms. Our
numerical studies reveal that the conductance depends strongly on whether or
not the substrate electrons are localized. As a further ubiquitous feature, we
observe the formation of charge oscillations.Comment: 7 pages, 7 figure
- …