6 research outputs found

    Facilitating Growth through Frustration: Using Genomics Research in a Course-Based Undergraduate Research Experience

    Get PDF
    A hallmark of the research experience is encountering difficulty and working through those challenges to achieve success. This ability is essential to being a successful scientist, but replicating such challenges in a teaching setting can be difficult. The Genomics Education Partnership (GEP) is a consortium of faculty who engage their students in a genomics Course-Based Undergraduate Research Experience (CURE). Students participate in genome annotation, generating gene models using multiple lines of experimental evidence. Our observations suggested that the students’ learning experience is continuous and recursive, frequently beginning with frustration but eventually leading to success as they come up with defendable gene models. In order to explore our “formative frustration” hypothesis, we gathered data from faculty via a survey, and from students via both a general survey and a set of student focus groups. Upon analyzing these data, we found that all three datasets mentioned frustration and struggle, as well as learning and better understanding of the scientific process. Bioinformatics projects are particularly well suited to the process of iteration and refinement because iterations can be performed quickly and are inexpensive in both time and money. Based on these findings, we suggest that a dynamic of “formative frustration” is an important aspect for a successful CURE

    Regulation of Gonad Morphogenesis in Drosophila melanogaster by BTB Family Transcription Factors

    Get PDF
    During embryogenesis, primordial germ cells (PGCs) and somatic gonadal precursor cells (SGPs) migrate and coalesce to form the early gonad. A failure of the PGCs and SGPs to form a gonad with the proper architecture not only affects germ cell development, but can also lead to infertility. Therefore, it is critical to identify the molecular mechanisms that function within both the PGCs and SGPs to promote gonad morphogenesis. We have characterized the phenotypes of two genes, longitudinals lacking (lola) and ribbon (rib), that are required for the coalescence and compaction of the embryonic gonad in Drosophila melanogaster. rib and lola are expressed in the SGPs of the developing gonad, and genetic interaction analysis suggests these proteins cooperate to regulate gonad development. Both genes encode proteins with DNA binding motifs and a conserved protein-protein interaction domain, known as the Broad complex, Tramtrack, Bric-Ă -brac (BTB) domain. Through molecular modeling and yeast-two hybrid studies, we demonstrate that Rib and Lola homo- and heterodimerize via their BTB domains. In addition, analysis of the colocalization of Rib and Lola with marks of transcriptional activation and repression on polytene chromosomes reveals that Rib and Lola colocalize with both repressive and activating marks and with each other. While previous studies have identified Rib and Lola targets in other tissues, we find that Rib and Lola are likely to function via different downstream targets in the gonad. These results suggest that Rib and Lola act as dual-function transcription factors to cooperatively regulate embryonic gonad morphogenesis

    The Eyes Absent Family of Phosphotyrosine Phosphatases: Properties and Roles in Developmental Regulation of Transcription

    No full text
    Integration of multiple signaling pathways at the level of their transcriptional effectors provides an important strategy for fine-tuning gene expression and ensuring a proper program of development. Posttranslational modifications, such as phosphorylation, play important roles in modulating transcription factor activity. The discovery that the transcription factor Eyes absent (Eya) possesses protein phosphatase activity provides an interesting new paradigm. Eya may regulate the phosphorylation state of either itself or its transcriptional cofactors, thereby directly affecting transcriptional output. The identification of a growing number of transcription factors with enzymic activity suggests that such dual-function proteins exert greater control of signaling events than previously imagined. Given the conservation of both its phosphatase and transcription factor activity across mammalian species, Eya provides an excellent model for studying how a single protein integrates these two functions under the influence of multiple signaling pathways to promote development

    Informing future cartilage repair strategies: a comparative study of three different human cell types for cartilage tissue engineering.

    Get PDF
    A major clinical need exists for cartilage repair and regeneration. Despite many different strategies having been pursued, the identification of an optimised cell type and of pre-treatment conditions remains a challenge. This study compares the cartilage-like tissue generated by human bone marrow stromal cells (HBMSCs) and human neonatal and adult chondrocytes cultured on three-dimensional (3D) scaffolds under various conditions in vitro and in vivo with the aim of informing future cartilage repair strategies based upon tissue-engineering approaches. After 3 weeks in vitro culture, all three cell types showed cartilage-like tissue formation on 3D poly (lactide-co-glycolide) acid scaffolds only when cultured in chondrogenic medium. After 6 weeks of chondro-induction, neonatal chondrocyte constructs revealed the most cartilage-like tissue formation with a prominent superficial zone-like layer, a middle zone-like structure and the thinnest fibrous capsule. HBMSC constructs had the thickest fibrous capsule formation. Under basal culture conditions, neonatal articular chondrocytes failed to form any tissue, whereas HBMSCs and adult chondrocytes showed thick fibrous capsule formation at 6 weeks. After in vivo implantation, all groups generated more compact tissues compared with in vitro constructs. Pre-culturing in chondrogenic media for 1 week before implantation reduced fibrous tissue formation in all cell constructs at week 3. After 6 weeks, only the adult chondrocyte group pre-cultured in chondrogenic media was able to maintain a more chondrogenic/less fibrocartilaginous phenotype. Thus, pre-culture under chondrogenic conditions is required to maintain a long-term chondrogenic phenotype, with adult chondrocytes being a more promising cell source than HBMSCs for articular cartilage tissue engineering
    corecore