2 research outputs found

    Towards positive energy districts: assessing the contribution of virtual power plants and energy communities

    Get PDF
    The concept of positive energy districts (PED) encompasses a range of policies and strategies in response to climate protection targets in urban areas. Due to the limited potential of renewable energy in urban neighborhoods, broader definitions of PED are proposed that allow for energy exchange through the grid infrastructure. This study evaluates demand side management in combination with a virtual power plant (VPP) to assess the impact on the design of PED. In particular, the optimal customer behavior in response to flexible electricity tariffs is analyzed. A techno-economic energy system model is proposed for an urban area in Germany that optimizes the customer cost and the VPP’s margin. This includes electrical energy generation, storage, demand, and access to the short-term electricity market. Based on economic analysis, a dynamic market-based tariff allows the VPP to maximize profit margins. Consumers benefit when the local balances of renewable energy supply and demand are integrated into the dynamic tariff

    Economic potential of demand side management based on smart metering of youth hostels in Germany

    Get PDF
    Additional electricity meters behind the grid access point can improve understanding of energy consumption patterns and thus, adjust consumption behavior. For this study, smart meters were installed in three hostels, out of which two are analyzed further in this paper. Starting from an onsite inspection, all appliances were assigned to reasonable groups for sub-metering. Based on data for the year 2021, the sites are characterized according to the sub-metering concept. In addition, load profiles for type-days are derived, which allows to establish a baseload during COVID lockdown and compare it to consumption patterns for normal occupation. In the prescriptive part, the demand profiles are analyzed regarding their economic potential for load shifting. Consumption data for one week with normal occupation is used as input for techno-economic modeling. The mixed-integer model minimizes electricity purchasing costs for different scenarios including dynamic tariffs and onsite generation from photovoltaics
    corecore