165 research outputs found

    Expression of membrane-bound CC chemokine ligand 20 on follicular T helper cells in T-B-cell conjugates

    Get PDF
    The CC chemokine receptor 6 (CCR6) and its sole chemokine ligand CC chemokine ligand 20 (CCL20) display an emerging role in the coordination of humoral immune responses. Recent studies demonstrate a role of this chemokine axis in the migration of B cells to key immunological sites during an immune response, and facilitating the generation of high-quality antibodies. Very little, however, is known about CCL20 and its role in these functions. We undertook a preliminary investigation into the expression and function of CCL20 and demonstrate its well-noted upregulation in the spleen during immunization. Furthermore, we show that most follicular T helper (Tfh) cells can be CCR6 + and can produce CCL20. Surprisingly, CCL20 cannot only be found in the cytoplasm but also on the surface of these cells and their precursors. Analysis of T-B-cell conjugates revealed that mature Tfh cells, but not their precursors, are highly enriched in the conjugates. Further functional studies are needed to unravel the precise role of CCL20 in coordinating T and B cell interactions during the humoral immune response

    Sisyphus Cooling of Electrically Trapped Polyatomic Molecules

    Full text link
    The rich internal structure and long-range dipole-dipole interactions establish polar molecules as unique instruments for quantum-controlled applications and fundamental investigations. Their potential fully unfolds at ultracold temperatures, where a plethora of effects is predicted in many-body physics, quantum information science, ultracold chemistry, and physics beyond the standard model. These objectives have inspired the development of a wide range of methods to produce cold molecular ensembles. However, cooling polyatomic molecules to ultracold temperatures has until now seemed intractable. Here we report on the experimental realization of opto-electrical cooling, a paradigm-changing cooling and accumulation method for polar molecules. Its key attribute is the removal of a large fraction of a molecule's kinetic energy in each step of the cooling cycle via a Sisyphus effect, allowing cooling with only few dissipative decay processes. We demonstrate its potential by reducing the temperature of about 10^6 trapped CH_3F molecules by a factor of 13.5, with the phase-space density increased by a factor of 29 or a factor of 70 discounting trap losses. In contrast to other cooling mechanisms, our scheme proceeds in a trap, cools in all three dimensions, and works for a large variety of polar molecules. With no fundamental temperature limit anticipated down to the photon-recoil temperature in the nanokelvin range, our method eliminates the primary hurdle in producing ultracold polyatomic molecules. The low temperatures, large molecule numbers and long trapping times up to 27 s will allow an interaction-dominated regime to be attained, enabling collision studies and investigation of evaporative cooling toward a BEC of polyatomic molecules

    Interaction between O-GlcNAc Modification and Tyrosine Phosphorylation of Prohibitin: Implication for a Novel Binary Switch

    Get PDF
    Prohibitin (PHB or PHB1) is an evolutionarily conserved, multifunctional protein which is present in various cellular compartments including the plasma membrane. However, mechanisms involved in various functions of PHB are not fully explored yet. Here we report for the first time that PHB interacts with O-linked β-N-acetylglucosamine transferase (O-GlcNAc transferase, OGT) and is O-GlcNAc modified; and also undergoes tyrosine phosphorylation in response to insulin. Tyrosine 114 (Tyr114) and tyrosine 259 (Tyr259) in PHB are in the close proximity of potential O-GlcNAc sites serine 121 (Ser121) and threonine 258 (Thr258) respectively. Substitution of Tyr114 and Tyr259 residues in PHB with phenylalanine by site-directed mutagenesis results in reduced tyrosine phosphorylation as well as reduced O-GlcNAc modification of PHB. Surprisingly, this also resulted in enhanced tyrosine phosphorylation and activity of OGT. This is attributed to the presence of similar tyrosine motifs in PHB and OGT. Substitution of Ser121 and Thr258 with alanine and isoleucine respectively resulted in attenuation of O-GlcNAc modification and increased tyrosine phosphorylation of PHB suggesting an association between these two dynamic modifications. Sequence analysis of O-GlcNAc modified proteins having known O-GlcNAc modification site(s) or known tyrosine phosphorylation site(s) revealed a strong potential association between these two posttranslational modifications in various proteins. We speculate that O-GlcNAc modification and tyrosine phosphorylation of PHB play an important role in tyrosine kinase signaling pathways including insulin, growth factors and immune receptors signaling. In addition, we propose that O-GlcNAc modification and tyrosine phosphorylation is a novel previously unidentified binary switch which may provide new mechanistic insights into cell signaling pathways and is open for direct experimental examination

    High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway

    Get PDF
    BACKGROUND: The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C(6)H(10)O(5) (l)+7 H(2)O (l)→12 H(2) (g)+6 CO(2) (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. CONCLUSIONS: Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H(2)/glucose) of anaerobic fermentations. SIGNIFICANCE: The unique features, such as mild reaction conditions (30°C and atmospheric pressure), high hydrogen yields, likely low production costs ($∼2/kg H(2)), and a high energy-density carrier starch (14.8 H(2)-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy

    Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability of C<it>lostridium thermocellum </it>ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of <it>C. thermocellum </it>mRNA during growth on crystalline cellulose in controlled replicate batch fermentations.</p> <p>Results</p> <p>A time-series analysis of gene expression revealed changes in transcript levels of ~40% of genes (~1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase.</p> <p>Conclusions</p> <p>Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and <it>C. thermocellum </it>alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products, and nutrient gradients generated through the action of cell-free cellulosomes and, (iii) increase cellular motility for potentially orienting the cells' movement towards positive environmental signals leading to nutrient sources. Such a coordinated cellular strategy would increase its chances of survival in natural ecosystems where feast and famine conditions are frequently encountered.</p

    Genetic parameters for social effects on survival in cannibalistic layers: Combining survival analysis and a linear animal model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mortality due to cannibalism in laying hens is a difficult trait to improve genetically, because censoring is high (animals still alive at the end of the testing period) and it may depend on both the individual itself and the behaviour of its group members, so-called associative effects (social interactions). To analyse survival data, survival analysis can be used. However, it is not possible to include associative effects in the current software for survival analysis. A solution could be to combine survival analysis and a linear animal model including associative effects. This paper presents a two-step approach (2STEP), combining survival analysis and a linear animal model including associative effects (LAM).</p> <p>Methods</p> <p>Data of three purebred White Leghorn layer lines from Institut de Sélection Animale B.V., a Hendrix Genetics company, were used in this study. For the statistical analysis, survival data on 16,780 hens kept in four-bird cages with intact beaks were used. Genetic parameters for direct and associative effects on survival time were estimated using 2STEP. Cross validation was used to compare 2STEP with LAM. LAM was applied directly to estimate genetic parameters for social effects on observed survival days.</p> <p>Results</p> <p>Using 2STEP, total heritable variance, including both direct and associative genetic effects, expressed as the proportion of phenotypic variance, ranged from 32% to 64%. These results were substantially larger than when using LAM. However, cross validation showed that 2STEP gave approximately the same survival curves and rank correlations as LAM. Furthermore, cross validation showed that selection based on both direct and associative genetic effects, using either 2STEP or LAM, gave the best prediction of survival time.</p> <p>Conclusion</p> <p>It can be concluded that 2STEP can be used to estimate genetic parameters for direct and associative effects on survival time in laying hens. Using 2STEP increased the heritable variance in survival time. Cross validation showed that social genetic effects contribute to a large difference in survival days between two extreme groups. Genetic selection targeting both direct and associative effects is expected to reduce mortality due to cannibalism in laying hens.</p
    corecore