108 research outputs found

    Telemedicine in Parkinson's Disease: How to Ensure Patient Needs and Continuity of Care at the Time of COVID-19 Pandemic

    Get PDF
    Introduction: With the spread of the SARS-CoV2 pandemic, telemedicine has become the safest way to guarantee care continuity, especially for chronic disabling diseases requiring frequent medical consultations and therapeutic adjustments, such as Parkinson's disease (PD). The age-related prevalence of PD, combined with increased vulnerability due to age-related comorbidities, makes PD patients protection a priority. Methodology: We reviewed potentials and limitations of teleneurology in PD and suggested a specific battery of tests, including patient-reported outcomes, smartphone applications, and neurological examination through telemedicine. Conclusions: These tools can provide full neurological consultations, with the engagement of both patients and caregivers, and can support clinicians in defining whether patients need to access diagnostic and therapeutic procedures. Telemedicine will also carry a value in the future, within conventional health care, to support clinicians in decision making, enabling more efficacious follow-up, reducing burden for caregivers, and delivering neurological expertise to local realities. These advantages are very important when there is physical distance between patients and neurologists, and when patients are not recommended to attend in-person consultations

    MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs

    Get PDF
    Medulloblastoma (MB) is the most common malignant brain tumor of pediatric age and is characterized by cells expressing stem, astroglial, and neuronal markers. Among them, stem-like cells (hMB-SLCs) represent a fraction of the tumor cell population with the potential of self-renewal and proliferation and have been associated with tumor poor prognosis. In this context, microRNAs have been described as playing a pivotal role in stem cells differentiation. In our paper, we analyze microRNAs profile and genes expression of hMB-SLCs before and after Retinoic Acid- (RA-) induced differentiation. We aimed to identify pivotal players of specific pathways sustaining stemness and/or tumor development and progression and integrate the results of our recent proteomic study. Our results uncovered 22 differentially expressed microRNAs that were used as input together with deregulated genes and proteins in the Genomatix Pathway System (GePS) analysis revealing 3 subnetworks that could be interestingly involved in the maintenance of hMB-SLCs proliferation. Taken together, our findings highlight microRNAs, genes, and proteins that are significantly modulated in hMB-SLCs with respect to their RA-differentiated counterparts and could open new perspectives for prognostic and therapeutic intervention on MB

    Assessment of Multiple Sclerosis Disability Progression Using a Wearable Biosensor: A Pilot Study

    Get PDF
    The evaluation of walking activity of people with multiple sclerosis (pwMS) is desirable. We evaluate the power of the correlation of motor parameters detected by the accelerometer in the Samsung Gear S2 smartwatch with multiple sclerosis (MS) disability measures and patient reported outcomes (PROs)

    Progressive multifocal leukoencephalopathy presenting with bilateral myoclonus: a case report

    Get PDF
    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS) caused by John Cunningham virus lytic infection of the oligodendrocytes, the myelin-producing cells in the CNS. Symptoms largely vary depending on location and size of the lesions, and the most frequent clinical presentation is characterized by motor deficits, altered consciousness, gait ataxia, and visual symptoms. Despite limb weakness or hemiparesis as the most frequent presenting symptom, involuntary movement is far less common, and very few cases are described in the literature with focal movement disorders without additional neurologic abnormalities. Here we described a case of PML in a patient treated for non-Hodgkin lymphoma with immunomodulatory chemotherapies who presented with bilateral myoclonus of the upper limbs. This report highlights the importance of considering PML in the differential diagnosis of focal movement disorders and discusses the potential causative mechanism of this atypical presentation

    Consequences of simulated microgravity in neural stem cells: biological effects and metabolic response.

    Get PDF
    Objective: Microgravity was often shown to cause cell damage and impair cell cycle in a variety of biological systems. Since the effects on the neural system were poorly investigated, we aimed to gain insight into how biological processes such as cell cycle, cell damage, stemness features and metabolic status are involved in neural stem cells (NSC) when they experience simulated microgravity. We also wished to investigate whether these modulations were transient or permanent once cells were returned to normal gravity. Methods: NSC were isolated from mouse cerebella and cultured in the Rotary Cell Culture System (RCCS) to model microgravity. We analyzed cell cycle, stress and apoptotic response. We also performed a 1H NMR-based metabolomic analysis and evaluation of stemness features of NSC in simulated microgravity and once in the returned to normogravity cell culture. Results: Biological processes and metabolic status were modulated by simulated microgravity. Cells were arrested in S-phase together with enhanced apoptosis. Metabolic changes occurred in NSC after simulated microgravity. Interestingly, these modulations were transient. Indeed, stemness features and metabolic footprint returned to basal levels after few days of culture in normal conditions. Moreover NSC clonogenic ability was not impaired. Conclusions: Our data suggest that simulated microgravity impacts on NSC biological processes, including cell cycle and apoptosis. However, NSC does not suffer from permanent damage

    β-arrestin1-mediated acetylation of Gli1 regulates Hedgehog/Gli signaling and modulates self-renewal of SHH medulloblastoma cancer stem cells

    Get PDF
    Background Aberrant Sonic Hedgehog/Gli (Hh/Gli) signaling pathway is a critical regulator of Sonic hedgehog medulloblastoma (SHH-MB). Cancer stem cells (CSCs), thought to be largely responsible for tumor initiation, maintenance, dissemination and relapse, have been identified in SHH-MB. Since we previously demonstrated that Hh/Gli signaling controls CSCs features in SHH-MB and that in these tumors miR-326 is down regulated, here we investigated whether there is a functional link between Hh/Gli signaling and miR-326. Methods We evaluated β-arrestin1 (Arrb1) and its intragenic miR-326 levels in CSCs derived from SHH-MB. Subsequently, we modulated the expression of Arrb1 and miR-326 in CSCs in order to gain insight into their biological role. We also analyzed the mechanism by which Arrb1 and miR-326 control Hh/Gli signaling and self-renewal, using luciferase and protein immunoprecipitation assays. Results Low levels of Arrb1 and miR-326 represent a feature of CSCs derived from SHH-MB. We observed that re-expression of Arrb1 and miR-326 inhibits Hh/Gli signaling pathway at multiple levels, which cause impaired proliferation and self-renewal, accompanied by down regulation of Nanog levels. In detail, miR-326 negatively regulates two components of the Hh/Gli pathway the receptor Smoothened (Smo) and the transcription factor Gli2, whereas Arrb1 suppresses the transcriptional activity of Gli1, by potentiating its p300-mediated acetylation. Conclusions Our results identify a new molecular mechanism involving miR-326 and Arrb1 as regulators of SHH-MB CSCs. Specifically, low levels of Arrb1 and miR-326 trigger and maintain Hh/Gli signaling and self-renewal

    Loss of miR-107, miR-181c and miR-29a-3p promote activation of Notch2 signaling in pediatric high-grade gliomas (pHGGs)

    Get PDF
    The mechanisms by which microRNAs control pediatric high-grade gliomas (pHGGs) have yet to be fully elucidated. Our studies of patient-derived pHGG tissues and of the pHGG cell line KNS42 revealed down-regulation in these tumors of three microRNAs, specifically miR-107, miR-181c, and miR-29a-3p. This down-regulation increases the proliferation of KNS42 cells by de-repressing expression of the Notch2 receptor (Notch2), a validated target of miR-107 and miR-181c and a putative target of miR-29a-3p. Inhibition (either pharmacologic or genetic) of Notch2 or re-expression of the implicated microRNAs (all three combined but also individually) significantly reduced KNS42 cell proliferation. These findings suggest that Notch2 pathway activation plays a critical role in pHGGs growth and reveal a direct epigenetic mechanism that controls Notch2 expression, which could potentially be targeted by novel forms of therapy for these childhood tumors characterized by high-morbidity and high-mortality

    The miR-139-5p regulates proliferation of supratentorial paediatric low-grade gliomas by targeting the PI3K/AKT/mTORC1 signalling

    Get PDF
    Paediatric low-grade gliomas (pLGGs) are a heterogeneous group of brain tumours associated with a high overall survival: however, they are prone to recur and supratentorial lesions are difficult to resect, being associated with high percentage of disease recurrence. Our aim was to shed light on the biology of pLGGs

    Wound Healing Activity of Nanoclay/Spring Water Hydrogels

    Get PDF
    Background: hydrogels prepared with natural inorganic excipients and spring waters are commonly used in medical hydrology. Design of these clay-based formulations continues to be a field scarcely addressed. Safety and wound healing properties of different fibrous nanoclay/spring water hydrogels were addressed. Methods: in vitro biocompatibility, by means of MTT assay, and wound healing properties were studied. Confocal Laser Scanning Microscopy was used to study the morphology of fibroblasts during the wound healing process. Results: all the ingredients demonstrated to be biocompatible towards fibroblasts. Particularly, the formulation of nanoclays as hydrogels improved biocompatibility with respect to powder samples at the same concentration. Spring waters and hydrogels were even able to promote in vitro fibroblasts motility and, therefore, accelerate wound healing with respect to the control. Conclusion: fibrous nanoclay/spring water hydrogels proved to be skin-biocompatible and to possess a high potential as wound healing formulations. Moreover, these results open new prospects for these ingredients to be used in new therapeutic or cosmetic formulations.This research was funded by Ministerio de Ciencia e Innovación, CGL2016–80833-R; Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía, P18-RT-3786 and Ministerio de Educación, Cultura y Deporte, FPU15/01577.Peer reviewe

    Ciprofloxacin carrier systems based on hectorite/halloysite hybrid hydrogels for potential wound healing applications

    Get PDF
    The design of multifunctional nanomaterials which can help the healing processes of skin, preventing the bacterial infections, is crucial for the development of suitable therapy for the treatment of chronic lesions. The use of clay minerals in wound healing applications is well documented since the prehistoric period and offers several advantages due to their intrinsic properties. Herein, we report the development of ciprofloxacin carrier systems based on hectorite/halloysite (Ht/Hal) hybrid hydrogels for potential wound healing applications. To achieve this objective firstly the ciprofloxacin molecules were loaded onto Hal by a supramolecular and covalent approach. The so obtained fillers were thoroughly investigated by several techniques and at molecular level by means of quantum mechanics calculations along with empirical interatomic potentials. Afterwards the modified Hal were used as filler for Ht hydrogels. The introduction of modified Hal, in hectorite hydrogel, helps the gel formation with an improvement of the rheological properties. The in vitro kinetic release from both the fillers and from the hybrid hydrogels was studied both at skin's pH (5.4) and under neutral conditions (pH 7.4); in addition, the factors controlling the ciprofloxacin release process were determined and discussed. Finally, the in vitro biocompatibility of the Hal fillers was evaluated by means of cytotoxic assays and laser scanning confocal microscopy on normal human dermal fibroblasts.The work was carried out in the frame of the PON “AIM: Attrazione e Mobilità Internazionale” No. 1808223-1 project. Authors are thankful to H.A. Duarte for providing atomic coordinates of halloysite, to the CSIC Computational Center and the University of Granada Computation Center for computation facilities, and the Andalusian project grants RNM-1897 and P18-RT-3786 , and the Spanish MINECO projects , PCIN-2017-098 , FIS2016-77692-C2-2-P and CGL2016-80833-R , for the financial support of this research
    corecore