131 research outputs found

    A Non-invasive technique for long-term monitoring of gastroesophageal reflux-a pilot study

    Get PDF
    Many people suffer from gastric or gastroesophageal reflux disorder (GERD) due to a malfunction of the cardia, the valve between the esophagus and the stomach. GERD is a syndrome caused by the ascent of gastric juices and bile from the stomach. This article proposes a non-invasive impedance measurement method and demonstrates the correlation between GERD and impedance variation between appropriately chosen points on the patient's chest. This method is presented as an alternative to the most widely accepted diagnostic techniques for reflux, such as pH-metry, pH-impedance measurement, and esophageal manometry, which are invasive because they use a probe that is inserted through a nostril and reaches down to the esophagus

    On Employing a Savitzky-Golay Filtering Stage to Improve Performance of Spectrum Sensing in CR Applications Concerning VDSA Approach

    Get PDF
    Abstract In this paper, a filtering stage based on employing a Savitzky-Golay (SG) filter is proposed to be used in the spectrum sensing phase of a Cognitive Radio (CR) communication paradigm for Vehicular Dynamic Spectrum Access (VDSA). It is used to smooth the acquired spectra, which constitute the input for a spectrum sensing algorithm. The sensing phase is necessary, since VDSA is based on an opportunistic approach to the spectral resource, and the opportunities are represented by the user-free spectrum zones, to be detected through the sensing phase. Each filter typology presents peculiarities in terms of its computational cost, de-noising ability and signal shape reconstruction. The SG filtering properties are compared with those of the linear Moving Average (MA) filter, widely used in the CR framework. Important improvements are proposed

    An Overall Automated Architecture Based on the Tapping Test Measurement Protocol: Hand Dexterity Assessment through an Innovative Objective Method

    Get PDF
    The present work focuses on the tapping test, which is a method that is commonly used in the literature to assess dexterity, speed, and motor coordination by repeatedly moving fingers, performing a tapping action on a flat surface. During the test, the activation of specific brain regions enhances fine motor abilities, improving motor control. The research also explores neuromuscular and biomechanical factors related to finger dexterity, revealing neuroplastic adaptation to repetitive movements. To give an objective evaluation of all cited physiological aspects, this work proposes a measurement architecture consisting of the following: (i) a novel measurement protocol to assess the coordinative and conditional capabilities of a population of participants; (ii) a suitable measurement platform, consisting of synchronized and non-invasive inertial sensors to be worn at finger level; (iii) a data analysis processing stage, able to provide the final user (medical doctor or training coach) with a plethora of useful information about the carried-out tests, going far beyond state-of-the-art results from classical tapping test examinations. Particularly, the proposed study underscores the importance interdigital autonomy for complex finger motions, despite the challenges posed by anatomical connections; this deepens our understanding of upper limb coordination and the impact of neuroplasticity, holding significance for motor abilities assessment, improvement, and therapeutic strategies to enhance finger precision. The proof-of-concept test is performed by considering a population of college students. The obtained results allow us to consider the proposed architecture to be valuable for many application scenarios, such as the ones related to neurodegenerative disease evolution monitoring

    Progressive multifocal leukoencephalopathy presenting with bilateral myoclonus: a case report

    Get PDF
    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS) caused by John Cunningham virus lytic infection of the oligodendrocytes, the myelin-producing cells in the CNS. Symptoms largely vary depending on location and size of the lesions, and the most frequent clinical presentation is characterized by motor deficits, altered consciousness, gait ataxia, and visual symptoms. Despite limb weakness or hemiparesis as the most frequent presenting symptom, involuntary movement is far less common, and very few cases are described in the literature with focal movement disorders without additional neurologic abnormalities. Here we described a case of PML in a patient treated for non-Hodgkin lymphoma with immunomodulatory chemotherapies who presented with bilateral myoclonus of the upper limbs. This report highlights the importance of considering PML in the differential diagnosis of focal movement disorders and discusses the potential causative mechanism of this atypical presentation

    Biotelemetric Monitoring of Brain Neurochemistry in Conscious Rats Using Microsensors and Biosensors

    Get PDF
    In this study we present the real-time monitoring of three key brain neurochemical species in conscious rats using implantable amperometric electrodes interfaced to a biotelemetric device. The new system, derived from a previous design, was coupled with carbon-based microsensors and a platinum-based biosensor for the detection of ascorbic acid (AA), O2 and glucose in the striatum of untethered, freely-moving rats. The miniaturized device consisted of a single-supply sensor driver, a current-to-voltage converter, a microcontroller and a miniaturized data transmitter. The redox currents were digitized to digital values by means of an analog-to-digital converter integrated in a peripheral interface controller (PIC), and sent to a personal computer by means of a miniaturized AM transmitter. The electronics were calibrated and tested in vitro under different experimental conditions and exhibited high stability, low power consumption and good linear response in the nanoampere current range. The in-vivo results confirmed previously published observations on striatal AA, oxygen and glucose dynamics recorded in tethered rats. This approach, based on simple and inexpensive components, could be used as a rapid and reliable model for studying the effects of different drugs on brain neurochemical systems

    Prolonged higher dose methylprednisolone vs. conventional dexamethasone in COVID-19 pneumonia: a randomised controlled trial (MEDEAS)

    Get PDF
    Dysregulated systemic inflammation is the primary driver of mortality in severe COVID-19 pneumonia. Current guidelines favor a 7-10-day course of any glucocorticoid equivalent to dexamethasone 6 mg·day-1. A comparative RCT with a higher dose and a longer duration of intervention was lacking
    • …
    corecore