1,055 research outputs found

    Strategy Switching: Smart Fault-Tolerance for Weakly-Hard Resource-Constrained Real-Time Applications

    Get PDF
    The probability of data corruption as a result of single event upsets (SEUs) increases as transistor sizes decrease. Software-based fault-tolerance can help offer protection against SEUs on Commercial off The Shelf (COTS) hardware. However, such fault tolerance relies on replication, for which there may be insufficient resources in resource-constrained environments. Systems in the weakly-hard real-time domain can tolerate some faults as a product of their domain. Combining both the need for fault-tolerance and the intrinsic ability to tolerate faults, we propose a new approach for applying fault-tolerance named strategy switching. Strategy switching minimizes the effective unmitigated fault-rate by switching which tasks are to be run under a fault-tolerance scheme at runtime. Our method does not require bounding the number of faults for a given number of consecutive iterations.We show how our method improves the steady-state fault rate by analytically computing the rate for our test set of generated DAGs and comparing this against a static application of fault-tolerance. Finally, we validate our method using UPPAAL.</p

    Criticality in Dynamic Arrest: Correspondence between Glasses and Traffic

    Full text link
    Dynamic arrest is a general phenomenon across a wide range of dynamic systems, but the universality of dynamic arrest phenomena remains unclear. We relate the emergence of traffic jams in a simple traffic flow model to the dynamic slow down in kinetically constrained models for glasses. In kinetically constrained models, the formation of glass becomes a true (singular) phase transition in the limit T0T\to 0. Similarly, using the Nagel-Schreckenberg model to simulate traffic flow, we show that the emergence of jammed traffic acquires the signature of a sharp transition in the deterministic limit \pp\to 1, corresponding to overcautious driving. We identify a true dynamical critical point marking the onset of coexistence between free flowing and jammed traffic, and demonstrate its analogy to the kinetically constrained glass models. We find diverging correlations analogous to those at a critical point of thermodynamic phase transitions.Comment: 4 pages, 4 figure

    Gravitational Waves in Bianchi Type-I Universes I: The Classical Theory

    Full text link
    The propagation of classical gravitational waves in Bianchi Type-I universes is studied. We find that gravitational waves in Bianchi Type-I universes are not equivalent to two minimally coupled massless scalar fields as it is for the Robertson-Walker universe. Due to its tensorial nature, the gravitational wave is much more sensitive to the anisotropy of the spacetime than the scalar field is and it gains an effective mass term. Moreover, we find a coupling between the two polarization states of the gravitational wave which is also not present in the Robertson-Walker universe.Comment: 34 papers, written in ReVTeX, submitted to Physical Review

    Replicating Nanostructures on Silicon by Low Energy Ion Beams

    Get PDF
    We report on a nanoscale patterning method on Si substrates using self-assembled metal islands and low-energy ion-beam irradiation. The Si nanostructures produced on the Si substrate have a one-to-one correspondence with the self-assembled metal (Ag, Au, Pt) nanoislands initially grown on the substrate. The surface morphology and the structure of the irradiated surface were studied by high-resolution transmission electron microscopy (HRTEM). TEM images of ion-beam irradiated samples show the formation of sawtooth-like structures on Si. Removing metal islands and the ion-beam induced amorphous Si by etching, we obtain a crystalline nanostructure of Si. The smallest structures emit red light when exposed to a UV light. The size of the nanostructures on Si is governed by the size of the self-assembled metal nanoparticles grown on the substrate for this replica nanopatterning. The method can easily be extended for tuning the size of the Si nanostructures by the proper choice of the metal nanoparticles and the ion energy in ion-irradiation. It is suggested that off-normal irradiation can also be used for tuning the size of the nanostructures.Comment: 12 pages, 7 figures, regular paper submitted to Nanotechnolog

    Evaluating the existence of vertebrate deadfall communities from the Early Jurassic posidonienschiefer formation

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaLarge vertebrate carcasses contain significant amounts of nutrients that upon death are transferred from the water column to the benthos, enriching the immediate environment. The organisms exploiting these ephemeral resources vary as the carcass decays, creating an ecological succession: mobile scavengers arrive first, followed by enrichment opportunists, sulfophilic taxa, and lastly reef species encrusting the exposed bones. Such communities have been postulated to subsist on the carcasses of Mesozoic marine vertebrates, but are rarely documented in the Jurassic. In particular, these communities are virtually unknown from the Early Jurassic, despite the occurrence of several productive fossil Lagerstätte that have produced thousands of vertebrate bones and skeletons. We review published occurrences and present new findings related to the development of deadfall communities in the Toarcian Posidonienschiefer Formation of southwestern Germany, focusing on the classic locality of Holzmaden. We report the presence of the mobile scavenger, enrichment opportunist, and reef stages, and found potential evidence for the poorly documented sulfophilic stage. Although rare in the Posidonienschiefer Formation, such communities do occur in association with exceptionally preserved vertebrate specimens, complementing a growing body of evidence that a temporarily oxygenated benthic environment does not preclude exceptional vertebrate fossil preservation

    The use of chest magnetic resonance imaging in interstitial lung disease: A systematic review

    Get PDF
    Thin-slices multi-detector computed tomography (MDCT) plays a key role in the differential diagnosis of interstitial lung disease (ILD). However, thin-slices MDCT has a limited ability to detect active inflammation, which is an important target of newly developed ILD drug therapy. Magnetic resonance imaging (MRI), thanks to its multi-parameter capability, provides better tissue characterisation than thin-slices MDCT. Our aim was to summarise the current status of MRI applications in ILD and to propose an ILD-MRI protocol. A systematic literature search was conducted for relevant studies on chest MRI in patients with ILD. We retrieved 1246 papers of which 55 original papers were selected for the review. We identified 24 studies comparing image quality of thin-slices MDCT and MRI using several MRI sequences. These studies described new MRI sequences to assess ILD parenchymal abnormalities, such as honeycombing, reticulation and ground-glass opacity. Thin-slices MDCT remains superior to MRI for morphological imaging. However, recent studies with ultra-short echo-time MRI showed image quality comparable to thin-slices MDCT. Several studies demonstrated the added value of chest MRI by using functional imaging, especially to detect and quantify inflammatory changes. We concluded that chest MRI could play a role in ILD patients to differentiate inflammatory and fibrotic changes and to assess efficacy of new ILD drugs

    Maporal Hantavirus Causes Mild Pathology in Deer Mice (\u3ci\u3ePeromyscus maniculatus\u3c/i\u3e)

    Get PDF
    Rodent-borne hantaviruses can cause two human diseases with many pathological similarities: hantavirus cardiopulmonary syndrome (HCPS) in the western hemisphere and hemorrhagic fever with renal syndrome in the eastern hemisphere. Each virus is hosted by specific reservoir species without conspicuous disease. HCPS-causing hantaviruses require animal biosafety level-4 (ABSL-4) containment, which substantially limits experimental research of interactions between the viruses and their reservoir hosts. Maporal virus (MAPV) is a South American hantavirus not known to cause disease in humans, thus it can be manipulated under ABSL-3 conditions. The aim of this study was to develop an ABSL-3 hantavirus infection model using the deer mouse (Peromyscus maniculatus), the natural reservoir host of Sin Nombre virus (SNV), and a virus that is pathogenic in another animal model to examine immune response of a reservoir host species. Deer mice were inoculated with MAPV, and viral RNA was detected in several organs of all deer mice during the 56 day experiment. Infected animals generated both nucleocapsid-specific and neutralizing antibodies. Histopathological lesions were minimal to mild with the peak of the lesions detected at 7–14 days postinfection, mainly in the lungs, heart, and liver. Low to modest levels of cytokine gene expression were detected in spleens and lungs of infected deer mice, and deer mouse primary pulmonary cells generated with endothelial cell growth factors were susceptible to MAPV with viral RNA accumulating in the cellular fraction compared to infected Vero cells. Most features resembled that of SNV infection of deer mice, suggesting this model may be an ABSL-3 surrogate for studying the host response of a New World hantavirus reservoir

    Maporal Hantavirus Causes Mild Pathology in Deer Mice (\u3ci\u3ePeromyscus maniculatus\u3c/i\u3e)

    Get PDF
    Rodent-borne hantaviruses can cause two human diseases with many pathological similarities: hantavirus cardiopulmonary syndrome (HCPS) in the western hemisphere and hemorrhagic fever with renal syndrome in the eastern hemisphere. Each virus is hosted by specific reservoir species without conspicuous disease. HCPS-causing hantaviruses require animal biosafety level-4 (ABSL-4) containment, which substantially limits experimental research of interactions between the viruses and their reservoir hosts. Maporal virus (MAPV) is a South American hantavirus not known to cause disease in humans, thus it can be manipulated under ABSL-3 conditions. The aim of this study was to develop an ABSL-3 hantavirus infection model using the deer mouse (Peromyscus maniculatus), the natural reservoir host of Sin Nombre virus (SNV), and a virus that is pathogenic in another animal model to examine immune response of a reservoir host species. Deer mice were inoculated with MAPV, and viral RNA was detected in several organs of all deer mice during the 56 day experiment. Infected animals generated both nucleocapsid-specific and neutralizing antibodies. Histopathological lesions were minimal to mild with the peak of the lesions detected at 7–14 days postinfection, mainly in the lungs, heart, and liver. Low to modest levels of cytokine gene expression were detected in spleens and lungs of infected deer mice, and deer mouse primary pulmonary cells generated with endothelial cell growth factors were susceptible to MAPV with viral RNA accumulating in the cellular fraction compared to infected Vero cells. Most features resembled that of SNV infection of deer mice, suggesting this model may be an ABSL-3 surrogate for studying the host response of a New World hantavirus reservoir

    Transvaginal Repair of a Large Chronic Porcine Ventral Hernia with Synthetic Mesh Using NOTES

    Get PDF
    Transvaginal placement of synthetic mesh to repair large porcine hernia using NOTES technology appears to be a feasible alternative to traditional techniques

    The Influence of an Adsorbate Layer on Adatom Diffusion and Island Nucleation: Fe on Si(111)-√3 x √3-Au

    Get PDF
    Using scanning tunneling microscopy, the influence of a thin Au layer on the diffusion of Fe adatoms and the subsequent island nucleation on a Si(111) surface is investigated. The adsorbate induces thestructure that increases the surface mobility of subsequently deposited Fe atoms, resulting in the formation well-defined nanoclusters. Surprisingly, the domain walls—inherent to the reconstruction—do not influence the surface diffusion, which demonstrates that the passivation is of much more importance for the self-assembly than the surface corrugation. Using the decoupling of the diffusion and nucleationonthe surface and the reactionwiththe surface and conventional nucleation theory, the activation energy for surface diffusionEd = 0.61 eV and the critical cluster sizei = 3 are determined, which reveal the microscopic details of the diffusion and nucleation processes
    corecore