9 research outputs found

    High Temperature Creep of Metal Oxides

    Get PDF
    This chapter presents a comprehensive review of the creep technique used for the study of defect structure and diffusion in metal oxides, both single crystals and ceramics. At high temperatures, the creep rate is proportional to the diffusion coefficient of the slowest species in solid compounds, whatever deformation mechanisms are present (Nabarro viscous creep, recovery creep or pure climb creep). The creep rate dependence on deviation from stoichiometry can be determined from this diffusion. In the case of metal oxides, the departure from stoichiometry is controlled by the oxygen activity which usually is identified with oxygen partial pressure, pO2. The pO2 dependence of the creep rate provides direct information about the nature of minority point defects. On the other hand, studies of the temperature dependency of the creep rate inform us about the activation energy of the diffusion coefficient.This review focuses primarily on the creep behavior of transition metal oxides such as Ni1−yO, Co1−yO, Fe1−yO exhibiting disorder in metal sublattice, as well as ZrO2−x with majority defects in oxygen sublattice. The advantage of these studies is determination of both defect structure and diffusion coefficients of minority defects namely in oxygen sublattice in iron-triad oxides and in zirconium ZrO2 sublattice

    Effect of Nb doping on structural, optical and photocatalytic properties of flame-made TiO2 nanopowder

    Get PDF
    TiO2:Nb nanopowders within a dopant concentration in the range of 0.1-15at.% were prepared by one-step flame spray synthesis. Effect of niobium doping on structural, optical and photocatalytic properties of titanium dioxide nanopowders was studied. Morphology and structure were investigated by means of Brunauer-Emmett-Teller isotherm, X-ray diffraction and transmission electron microscopy. Diffuse reflectance and the resulting band gap energy were determined by diffuse reflectance spectroscopy. Photocatalytic activity of the investigated nanopowders was revised for the photodecomposition of methylene blue (MB), methyl orange (MO) and 4-chlorophenol under UVA and VIS light irradiation. Commercial TiO2-P25 nanopowder was used as a reference. The specific surface area of the powders was ranging from 42.9m2/g for TiO2:0.1at.% Nb to 90.0m2/g for TiO2:15at.% Nb. TiO2:Nb particles were nanosized, spherically shaped and polycrystalline. Anatase was the predominant phase in all samples. The anatase-related transition was at 3.31eV and rutile-related one at 3.14eV. TiO2:Nb nanopowders exhibited additional absorption in the visible range. In comparison to TiO2-P25, improved photocatalytic activity of TiO2:Nb was observed for the degradation of MB and MO under both UVA and VIS irradiation, where low doping level (Nb < 1at.%) was the most effective. Niobium doping affected structural, optical and photocatalytic properties of TiO2. Low dopant level enhanced photocatalytic performance under UVA and VIS irradiation. Therefore, TiO2:Nb (Nb < 1at.%) can be proposed as an efficient selective solar light photocatalys

    Application of microcalorimetry in studies of interaction between oxygen and NiO single crystals

    No full text
    International audienceMicrocalorimetry was used to study the interaction between gaseous oxygen and NiO single crystals. The studies involved consecutive sorption of small and large oxygen doses at 1000 K. Fast and slow processes of oxygen incorporation into NiO were distinguished. The fast process involved oxygen sorption in the near-surface layer. Then oxygen incorporation was ratecontrolled by a slow lattice diffusion in the crystalline bulk. A power of oxygen pressure dependence was found (1/n = 1/4.25) which was consistent with the defect structure of NiO. Heat of formation of cation vacancies was determined [&#916f=155 kJ/mole]

    Effect of Nb doping on structural, optical and photocatalytic properties of flame-made TiO2 nanopowder

    No full text
    TiO2:Nb nanopowders within a dopant concentration in the range of 0.1-15 at.% were prepared by one-step flame spray synthesis. Effect of niobium doping on structural, optical and photocatalytic properties of titanium dioxide nanopowders was studied. Morphology and structure were investigated by means of Brunauer–Emmett–Teller isotherm, X-ray diffraction and transmission electron microscopy. Diffuse reflectance and the resulting band gap energy were determined by diffuse reflectance spectroscopy. Photocatalytic activity of the investigated nanopowders was revised for the photodecomposition of methylene blue (MB), methyl orange (MO) and 4-chlorophenol under UVA and VIS light irradiation. Commercial TiO2-P25 nanopowder was used as a reference. The specific surface area of the powders was ranging from 42.9 m2/g for TiO2:0.1 at.% Nb to 90.0 m2/g for TiO2:15 at.% Nb. TiO2:Nb particles were nanosized, spherically shaped and polycrystalline. Anatase was the predominant phase in all samples. The anatase-related transition was at 3.31 eV and rutile-related one at 3.14 eV. TiO2:Nb nanopowders exhibited additional absorption in the visible range. In comparison to TiO2-P25, improved photocatalytic activity of TiO2:Nb was observed for the degradation of MB and MO under both UVA and VIS irradiation, where low doping level (Nb < 1 at.%) was the most effective. Niobium doping affected structural, optical and photocatalytic properties of TiO2. Low dopant level enhanced photocatalytic performance under UVA and VIS irradiation. Therefore, TiO2:Nb (Nb < 1 at.%) can be proposed as an efficient selective solar light photocatalyst
    corecore