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Abstract

This chapter presents a comprehensive review of the creep technique used for the study
of defect structure and diffusion in metal oxides, both single crystals and ceramics. At
high temperatures, the creep rate is proportional to the diffusion coefficient of the
slowest species in solid compounds, whatever deformation mechanisms are present
(Nabarro viscous creep, recovery creep or pure climb creep). The creep rate dependence
on deviation from stoichiometry can be determined from this diffusion. In the case of
metal oxides, the departure from stoichiometry is controlled by the oxygen activity
which usually is identified with oxygen partial pressure, pO2

. The pO2
dependence of

the creep rate provides direct information about the nature of minority point defects. On
the other hand, studies of the temperature dependency of the creep rate inform us about
the activation energy of the diffusion coefficient.This review focuses primarily on the
creep behavior of transition metal oxides such as Ni1�yO, Co1�yO, Fe1�yO exhibiting
disorder in metal sublattice, as well as ZrO2�xwith majority defects in oxygen sublattice.
The advantage of these studies is determination of both defect structure and diffusion
coefficients of minority defects namely in oxygen sublattice in iron-triad oxides and in
zirconium ZrO2 sublattice.

Keywords: high temperature creep of metal oxides, defect structure, nonstoichiometry,
diffusion

1. Introduction

This chapter presents a review of the creep technique used for the study of defect structure and

diffusion in metal oxides. Transition metals of the iron-row triad (Fe, Co, Ni) monoxides were

chosen. These oxides at higher temperatures exhibit electronic conductivity. Zirconia stabilized

with yttria, termed as YSZ, was also the subject of interest. This material is treated as model

system of ionic (super ionic) conductor. Taking into account that creep behavior of the oxides is

generally dependent of the minority defects properties (types and concentrations) which are

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



especially strictly related with majority point defect, a short description of the point defect

structure of each analyzed oxide proceeds the appropriate chapter.

2. Definition of terms

Creep, or more generally high-temperature plastic deformation of metal oxides, is a suitable

method for measuring diffusion coefficients and to assess the nature of point defects responsi-

ble for diffusion processes. Above a so called Tamman’s temperature and under constant

applied stress, a steady state is reached where the rate of deformation remains constant.

Tamman’s temperature of metal oxides assumes value of about 0.45 � Tmelt [K] [1] creep rates,

_ε, is commonly expressed by the equation [2]

_ε ¼

dε

dt
¼

Aσm

db
exp �

Q

kT

� �

(1)

where ε is the creep strain, A is constant dependent of the material structure and the creep

mechanism, σ is the applied stress, m and b are exponents dependent on the creep mechanism,

d is the grain diameter, k is Boltzmann’s constant, T is the absolute temperature and Q is an

activation energy of the creep.

At high temperatures, the creep rate is proportional to some diffusion coefficient, what-

ever the exact nature of deformation mechanism: Nabarro-Hearing creep, grain boundary

sliding and dislocation movements are valid [3]. This diffusion coefficient, D, is an effec-

tive diffusivity involving both the lattice and the grain boundaries diffusivities. In most

cases, it reduces to the diffusivity of the slowest species. In case of transition metal oxides,

the creep rate dependence on deviation from stoichiometry is carried out through diffu-

sivity. In binary oxides, at high temperatures the deviation from stoichiometry and related

majority point defects are controlled by the oxygen partial pressure, pO2
. In most cases,

these defects are only located either in metal or oxygen sublattice. Defects on other

sublattice are present in a much lower concentration (named as ‘minority defects’), and the

diffusivity of the corresponding species is very low. Their diffusion coefficient is propor-

tional to the concentration of minority defects, which also varies as some characteristic

power law with pO2
, so that creep rate has related to this variable. Accordingly, the pO2

dependence of the creep rate leads to a direct approach to assess the nature of the minority

point defects [2]

_ε ¼

dε

dt
¼

Cσm

db
p

1
n

O2
exp �

Eact

kT

� �

(2)

where C ¼ Ap
�

1
n

O2
, Eact = Q is the energy activation of diffusion and n is the parameter dependent

of the point defect structure.
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3. Creep of transition metal monoxides

The transition metal monoxides such as iron-triad group (Fe, Co, Ni) show only metal defi-

ciency: Fe1�yO, Co1�yO and Ni1�yO. The nonstoichiometry and related point defect structure

discussed below for these oxides are based on both thermogravimetric equilibration and

electrochemical measurements. The nonstoichiometry, y, is most pronounced with Fe1�yO

(y = 0.043�0.167) [4, 5], whereas in Co1�yO [6] and Ni1�yO [7] y is about 0.000–0.012 and

0.0000–0.0010, respectively.

Nonstoichiometry y in M1�yO (M = Fe, Co, Ni) can be modified by changes of oxygen activity,

pO2
, in thermodynamic equilibrium with the oxide crystal (Kröger and Vink [8] notation of

defects is used throughout this paper):

1

2
O2⇔ V i�

M þ ih• þOO (3)

where i = 0, 1, 2 denotes the degree ionization. The nonstoichiometry of the M1�yO is then

given by:

y ¼ Vx
M

� �

þ V 0
M

� �

þ V 00
M

� �

(4)

Applying themass action law to reaction (3) and assuming that interaction among defectsmay be

neglected, aswell as supposing appropriate electroneutrality conditions, one arrives at the follow-

ing relationship between nonstoichiometry and equilibrium oxygen pressure and temperature:

y ¼ yop
1=ny
O2

exp �
Ey

RT

� �

(5)

where 1/ny, or simply ny, is the parameter depending on the ionization degree of cation vacan-

cies, assuming 2, 4 and 6 values for neutral, single- and double-ionized vacancies, respectively;

Ey denotes the temperature coefficient directly related to the enthalpy of defect formation.

M1�yO (M = Fe, Co, Ni) are p-type semiconductors, which electrical conductivity is realized by

electron (or electron hole) hopping mechanism between M3+ and M2+ ions. The concentration

of quasi-free electron holes [h•] is given by:

h•½ � ¼ V 0
M

� �

þ 2 V 00
M

� �

(6)

Accordingly, the following relationship between electrical conductivity, σ and equilibrium

oxygen pressure and temperature is given by:

σ ¼ eμh h
•½ � ¼ σ

o p
1=nσ
O2

exp �
Eσ
RT

� �

(7a)

or
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h•½ � ¼ ho pO2

� 	 1
nσ
exp �

Eσ

RT

� �

(7b)

where e is the elementary charge, μ is mobility of the holes, σo and ho are constants involving

mobility of electron holes and entropy terms of the equilibrium constant of the reaction (3), nσ
is the parameter depending on the ionization degree of cation vacancies, assuming ∝, 4 and 6

values for neutral, single- and double-ionized vacancies, respectively; Eσ denotes the activation

energy of the electrical conductivity.

Several minority defects can be proposed in M1�yO. Considering only simple defects oxygen

vacancies V
jþ
O (j = 1 or 2) or oxygen interstitials Ok�

i (k = 1 or 2) the formation of these defects is

described by the following:

OO þ j h•⇔V
jþ
O þ

1

2
O2 (8)

and

1

2
O2⇔Ok�

i þ k h• (9)

Applying the mass action law to these equilibriums and taking into account the Eq. (7b), we

can write the following relationships:

V
jþ
O

h i

¼ Ko
j hoð Þ

j
pO2

� 	

j
nσ
�1

2ð Þ
exp

�jEσ þ ΔHjÞ

RT

� �

(10)

and

Ok�
i

h i

¼ Ko
i hoð Þ

�k
pO2

� 	 1
2�

k
nσð Þ

exp
�ΔHk � kEσÞ

RT

� �

(11)

From Eqs. (2) and (10),

1

n
¼

j

nσ
�
1

2
(12)

and

Eact ¼ jEσ þ ΔHj (13)

Similarly, from Eqs. (2) and (11),

1

n
¼

1

2
�

k

nσ
(14)

and
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Eact ¼ ΔHk � kEσ (15)

So, using Eqs. (12) and (13) or Eqs. (14) and (15) carrying out the creep rates measurements as a

function of oxygen partial pressure and temperature, we can determine both parameters n and

Eact. Then, using the values of electrical properties such as electrical conductivity (or Seebeck

coefficient) which are related to the concentration of the electron holes, we can identify the

type of minority defect responsible for the creep diffusion process and can determine the

activation energy of the diffusion.

3.1. Creep of NiO

Nickel oxide is a nonstoichiometric compound with a deficit of metal. Its chemical formula

may be written as Ni1�y.O. The resulting majority point defects are nickel vacancies formula

may be written as Ni1�y.O. The resulting majority point defects are nickel vacancies: VNi
0, VNi

00

and electron holes (Figure 1) [7]. The dependence of electrical conductivity, σ, as a function of

oxygen partial pressure, pO2
and temperature is shown in Figure 2 [9, 10]. The reciprocal of

oxygen exponent nσ = nh varies values between 4 and 6.

The results of the creep studies of NiO single crystals [11, 12] and NiO polycrystals [3, 13,

14] are summarized in Table 1. The comparison of the activation energies for creep rate

with oxygen self-diffusion obtained by Dubois et al. [15, 16] agrees only with a rather large

uncertainty [17–19]. Controversy, Figure 3 presents the diffusion coefficients determined by

tracer of nickel [17, 18] and by the tracer self-diffusion of oxygen [19] on one hand, and the

diffusion coefficient determined using the creep technique, on the other. The excellent

agreement is observed between oxygen diffusion coefficient and the diffusion coefficient

from the creep.

Figure 1. Majority defect concentration in Ni1�yO. Defect concentrations ([ ]) are unitless values. They are expressed as

Ni-site ratio.
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Figure 2. Electrical conductivity of at 1145 K Ni1�yO [9, 10].

Material T/

Tm
**

σ

(MPa)

pO2
(Pa) m Eact

(eV)

n Minority

defect

Mechanism of creep Ref.

NiO

s.crystal

0.09–

0.66

20–

100

0.1–2 � 104 NA NA NA NA NA [11]

NiO

s.crystal

0.6–

0.8

15–

120

1–2 � 104 12

7

5.4–8.5 �0.06 to

+0.11

VO
•• Thermally activated glide

recovery creep

[12]

NiO

polycrytals

0.6–

0.8

6–20

20–90

90

1–2 � 104 1.5

7.9

3.8 0–0.03 VO
•• Nabarro creep [13]

NiO

polycrytals

0.56–

0.61

34.5–

79.8

2 � 104 3.25 �

0.18

2.46 �

0.31

NA NA Diffusion controlled climb

glide

[25]

CoO

s.crystal

0.49–

0.66

6.9–31 2.1 � 104

1.1 � 10�4
4.6

3.3

2.9

1.77

NA NA Diffusion [24]

CoO

s.crystal

0.61–

0.75

8.3–

14.5

NA 5 2.2 NA NA Diffusion controlled

dislocation motion

[25]

CoO

s.crystal

0.61–

0.80

2–20 10�6

1 � 105
4.4–5.6 3.1–4.7 2 VO

•• \

Oi
x, Oi

�

Oi
2�

Oxygen diffusion [26]

CoO

s.crystal

0.6

0.8

5–25 1

2 � 104
8.5

6.5

5

2.5–5

0.5

0.1

Oi
»

VO
••

Oxygen diffusion [27]

CoiO

polycrytals

0.58–

0.62

34.5–

79.8

2 � 104 3 3.12 NA Na Dislocation motion [14]

FeO

polycrystals

0.73–

0.95

2.5–15 10�10
–3 �

10�8
4.15 �

0.10

2.8 NA VO
•• Climbing dislocations [37]

FeO

s.crystal

0.67

0.85

3.2–

5.3

3 � 10�13
–2

� 10�6
5.3

4.2

3.0 �

0.4

�0.015

+0.11

Oi
00

Oi
0

Diffusion controlled

recovery

[38]

*Denotation of symbols, see Eq. (2).
**Tm – Melting temperature (K).

Table 1. Creep results of NiO, CoO and FeO*.
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3.2. Creep of CoO

Taking into account both crystal structure and nonstoichiometry departure, CoO shows similar-

ities to NiO. However, there is a major difference at low temperature (below 1170 K) and high

oxygen pressure CoO is unstable and transforms to the spinel-type Co3O4 (Figure 4). Also the

departure of stoichiometry, y, in Co1�yO is about 10 times higher than that of Ni1�yO. Traditional

analysis of point defect structure in Co1�yO based on the ideal defect model with the assumption

that point defects in Co1�yO are randomly distributed and do not interact with each other, leads

to the conclusion that at high pO2
(close to CoO/Co3O4 border) the predominant ionic point

defects are VCo
x and VCo

0; at the intermediate region of pO2
both VCo

0 and VCo
00 coexist together

as the predominant ionic point defects; and finally near the border Co/CoO the doubly ionized

cobalt vacancies VCo
00 are predominant [20]. However, the assumption of validity of ideal point

defects in CoO is questionable. The ideal point defect model gives satisfactory results when

nonstoichiometry departure and related point defect concentration is below 0.1 at%, for higher

concentrations interaction between defects must be taken into account [21].

The interaction between defects in Co1�yO can be well described by the Debye-Hückel

approach [22]. In addition, the model proposed is based on the assumption that the only type

of predominant ionic defects present in cobalt monoxide at elevated temperatures are double-

ionized cation vacancies, VCo
00 instead of two or even more types of ionic defects considered

before. Despite the simplicity of the model, the agreement with the experiment is very good

within the entire range of CoO stability.

Figure 3. Temperature dependence of diffusion coefficients [14, 17–19].
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Apart from the Debye-Hückel model, there is also another model making allowance for

interaction between the defects which explains well the experimental data of CoO, in

particular at high values of deviation from stoichiometric composition (i.e. close to the

Co1�yO/Co3O4. This so called cluster model involves the formation of 4:1 clusters

consisting of four double-ionized octahedral cobalt vacancies and one trivalent Co ion in

tetrahedral interstitial position: [(VCo)4Coi]
3� [23]. Figure 5 [20] shows the plots of electri-

cal conductivity, σ, as a function of oxygen partial pressure and temperature. The depen-

dences shown can be used to determine the reciprocal of oxygen exponent n
σ

= nh

defined in Eq. (7a). The exact value of nh is needed in the interpretation of the creep rate

versus pO2
.

The results of the creep studies of CoO single crystals [24–28] and CoO polycrystals [14]

are summarized in Table 1. A comparison of the activation energies for creep rate with

oxygen self-diffusion obtained by Dubois et al. [15, 16] agrees only with a rather large

uncertainty.

Figure 4. Stability range of Co1�yO [6, 20].

Creep56



3.3. Creep of FeO

Iron monoxide, termed also as wüstite, has the NaCl-type structure. Compared to other

binary oxides of iron-row metals, the wüstite phase exhibits the highest deviation from

stoichiometry, varying from 4.3 at% at the Fe/Fe1�yO phase boundary up to 16.7 at% at the

Fe1�yO/Fe3O4 interphase (Figure 6) [4, 5, 29]. The non-stoichiometry occurs because of the

ease of oxidation of Fe2+ to Fe3+effectively replacing a small portion of Fe2+ with two-thirds

their number of Fe3+, which take up tetrahedral positions in the close packed oxide lattice.

The considerable concentration of defects, resulting from nonstoichiometry, leads to their

strong interactions and formation of complexes. On the basis of neutron diffraction studies,

Roth [30] has proposed the formation of defect complexes composed of two iron vacancies

and interstitial iron VFe
00ð Þ2Fe

3þ
i

� �0
. This defect is similar to an element of the spinel structure

of magnetite Fe3O4. Therefore, the Roth complexes can be formally considered as a

magnetite-type defect or a submicrodomain of Fe3O4 in FeO [28, 31]. On the basis of X-ray

studies, Koch and Cohen [32] have postulated that defects in Fe1�yO form associates even

larger than Roth 2:1 complexes, composed of 13 iron vacancies and 4 interstitials (termed as

cluster 13:4). The formation of the clusters was later confirmed by the neutron diffraction

Figure 5. Electrical conductivity, σ, as a function oxygen partial pressure and temperature [20].
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studies of Cheetham et al. [33, 34]. Catlow et al. [35, 36] using the computer simulation

method have proposed various kinds of defect clusters such as 4:1, 6:2. 8:3, 10:4, 12:4 and

16:5. It has been postulated that the 4:1 cluster is a constructional unit in formation of higher

order clusters. The cluster 16:5 resembles the magnetite structure and can be considered as a

Fe3O4-type microdefect.

The creep studies of FeO single crystals were performed by Ilschner et al. [37] and by Jolles and

Monty [38]. The required parameter nh ¼ n ¼
e
k

∂α

∂ln pO2

� �

�1

(where α is Seebeck coefficient) needed

Figure 6. Stability range of Feo1�yO [4, 5, 29].

Creep58



to interpretation of the creep rate versus pO2
is presented in Figure 7. The results of the creep

studies are summarized in Table 1.

4. Zirconia-based materials

Zirconium dioxide, ZrO2 has three polymorphic modifications: monoclinic below 1440 K, tetrag-

onal 1440–2640 K and cubic above 2640 K. The transition between them involves a large volume

expansion cause a cracking upon cooling from high temperature, which is detrimental to the

materials structural applications. The destructive phase transformation can be suppressed by

total or partial stabilization of high temperature modifications (cubic or tetragonal form). This

stabilization consists on the addition to ZrO2 several mole % of MgO, CaO or Y2O3 among

others. The most popular stabilizer is Y2O3 termed as yttria.

Figure 7. Seebeck coefficient, α, of Fe1�yO [31].
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Yttria-stabilized zirconia (YSZ) ceramics is a strategic functional material which has found

extensive applications in electrochemical devices, such as gas sensors, solid oxide fuel cells and

electrolysis cells.

Also the YSZ well known as an excellent construction material due to such properties as: high

hardness, low wear resistance, low coefficient of friction, high elastic modules, chemical inert-

ness, low thermal conductivity and high melting point [39–42]. It is also recognized that the

useful mechanical properties are obtained in multiphase material known as partially stabilized

zirconia (PSZ). Garvie and Nicholson [43] have demonstrated that a fine-scale precipitate of

monoclinic zirconia in a cubic stabilized matrix enhances the strength of PSZ. Very interested

mechanical properties were discovered in fine-grained tetragonal ZrO2 stabilized with 3 mol%

Y2O3 termed as 3Y-TZP [44, 45]. The macroscopic and microscopic behavior of 3Y-TZP can be

characterized as structural or micrograin superplasticity, according to the definition used by

metallurgists. The 170% elongation reported by Wakai et al. [44] on 3Y-TZP has been considered

as evidence of ceramic superplasticity in the ceramic materials. 3Y-TZP, termed as ‘ceramic steel’

[46, 47], is now considered to be the model ceramic system. The fine grade size leads to a very

dense, non-porous ceramic with excellent mechanical strength, corrosion resistance, impact

toughness, thermal shock resistance and very low thermal conductivity. Due to its characteristics

Y-TZP is used in wear parts, cutting tools and thermal barrier coatings.

Also, electrical properties of 3Y-TZP are very interesting. At moderate temperatures below

970 K the grain interior of Y-TZP has higher conductivity [47, 48] than that of fully (YSZ) or

partially stabilized (PSZ) zirconia [50]. However, the total conductivity of Y-TZP is lower due

to the high contribution of grain boundary resistivity, known as the blocking effect [47, 49]. It

was found that addition of Al2O3 leads considerable reduction of the blocking effect [50].

4.1. Defect structure of YSZ

The defect reactions in the yttria-stabilized zirconia can be written as:

Y2O3 ! 2Y0

Zr
þ V

••

O
þ 3 Ox

O
(16)

O
x

O
⇔V

••

O
þ 2 e

0
þ
1

2
O2 (17)

nil⇔ e
0
þ h

• (18)

The majority defect oxygen in yttria-stabilized zirconia are oxygen vacancies V••

O and yttrium

ions Y3+ (Y0

Zr using defect notation) occupying zirconium positions the electroneutrality con-

ditions is given by:

2 V
••

O

� �

¼ Y
0

Zr

� �

(19)

Ionic conductivity of ZrO2 + 10 mol% Y2O3, termed as 10YSZ resulting from the Eq. (19) is

illustrated in Figure 8 [51].

Combining Eqs. (16)–(19) we can determine concentration of both electronic defects:

Creep60



e0½ � ¼
2KV

Y0
Zr

� �

( )1=2

p
�1=4
O2

(20)

and

h•½ � ¼
K2
i Y0

Zr

� �

2KV
�

( )1=2

p
1=4
O2

(21)

where KV and Ki are equilibrium constants of reactions (17) and (18), respectively. Depen-

dences of electrons and electron holes conductivities are presented in Figure 8.

The possible minority defects are: zirconium interstitials Zr••••i and zirconium vacancies V 0000
Zr .

They occupy positions in zirconium sublattice and form according to the following reactions:

2Ox
O þ ZrxZr⇔Zr••••i þ 4e0 þO2 (22)

and

O2 þ 4e0⇔ 2Ox
O þ V 0000

Zr (23)

Applying the mass action law to reactions (22) and (23) gives:

Figure 8. Both ionic and electronic components of the electrical conductivity of yttria-stabilized zirconia (10YSZ) in the

range 973–1173 K as a function of pO2
, according to Weppner [51].
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Zr••••i

� �

¼ K22 e
0½ �
�4
p�1
O2

(24)

and

V 0000
Zr

� �

¼ K23 e
0½ �
4
pO2

(25)

where K22 and K23 are the equilibrium constants of reactions (22) and (23), respectively.

4.2. Creep of single crystalline zirconia

Marcartney et al. [52] studied creep of single crystal zirconia stabilized with 12 mol% CaO

within 1623–1723 K. They observed considerable climb and glide formation. Dominguez-

Rodriguez et al. [53–56] examined cubic YSZ (9.4–18 mol% Y2O3) single crystals. The deter-

mined activation energies of the deformation process were 646.4; 800.8 and 944.7 kJ/mol for

9.4, 12 and 18 mol% of yttria, respectively. Lankford [57] studied the deformation of two single

crystals of YSZ containing 2.8 and 12 mol% Y2O3.The temperature range of the experiments

was 296–1423 K. The plastic flow with rapid decrease in strength with increasing temperature

was observed. The deformation was attributed to dislocation activity alone. Corman [58]

examined the creep of single crystal 9.5 mol% yttria partially stabilized zirconia, within tem-

perature range 1923–2123 K and stress from 12.5 to 100 MPa.

The stress exponent, m, and activation energy Q (Eq. (1)) were m = 4 and Q = 436 kJ/mol. This

value is close to the lattice diffusion of Zr (418 kJ/mol). So, he concluded that cation diffusion is

controlled the process deformation.

4.3. Creep of polycrystalline zirconia

The dependence of steady state creep rate, _ε; on stress, σ; temperature, T and grain size, d of

polycrystalline zirconia is given by a general relationship of the form:

_ε ¼
ADGb

kT

b

d

� �p
σ

G

� 	m

(26)

where A is a dimensionless constant, G is the shear modulus, b is the Burgers vector, k is

Boltzmann’s constant, p and m are constants termed the inverse grain size and stress exponent,

respectively and D is the appropriate diffusion coefficient given by:

D ¼ Do exp �
Q

RT

� �

(27)

where Do is a frequency factor, Q is the appropriate activation energy and R is the gas constant.

Creep of polycrystalline zirconia was recently intensively studied. The subjects of interest were

cubic stabilized zirconia, CSZ [59–64], partial stabilized zirconia, PSZ [65–67] as well as tetrag-

onal zirconia polycrystals, TZP [44, 68–73].
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St Jacques and Angers [59] examined zirconia stabilized with 18 mol% CaO in the

temperatre range 1470–1670 K and stress between 3.5 and 27.5 MPa. The parameter m in

Eq. (26) was equal to 1, which suggested diffusionally controlled creep. The detailed study

by Dimos and Kohlstedt [60] on a cubic 25YSZ indicated that the creep is controlled by

the Nabarro-Herring diffusion mechanism with parameters m ≈ 1 and p ≈ 2. Wakai et al.

[61, 63] reported that a stress exponent m ≈ 2 in an 8YSZ. Sharif et al. [64] studying a

static grain growth claimed that cubic zirconia is prone to extensive grain growth.

Evans [66] studied deformation of yttria- and scandia- partially stabilized zirconia, PSZ

(1436 < T < 1808 K; 4.1 < σ < 7.1 MPa). The activation energies were 373 and 360 kJ/mol for

scandia and yttria, respectively, the parameter p = 2 was found, the parameter m was 1.5 for

scandia stabilized zirconia and it assumed two values m = 1 and m = 6 for yttria. Seltzer,

and Talty [67] studied Y-PSZ at high temperatures (up to 2270 K), they found m = 1.5 for

fine-grained samples (d varied from 15 to 20 μm) and activation energy was 531 kJ/mol.

Chevalier et al. [68] studied PSZ materials stabilized by MgO, they concluded that cavita-

tions and microcracking by grain boundary sliding have been identified as the main creep

mechanisms.

Wakai et al. [44] examined creep of 3Y-TZP within temperature range of 1423–1723 K. The

stress exponents m = 1.5 at 1423 K and gradually increased with temperature reaching value

m = 1.9 at 1723 K. The activation energy was 586 kJ/mol. Nauer and Carry [69] investigated

the creep behavior TZP containing 2, 3 and 4 mol% Y2O3. At lower stresses (σ < 10 MPa) the

parameters were: m = 2.4 and p = 1 and activation energy Q = 590 kJ/mol. At higher stresses

ca. 100 MPa, the parameter m = 1. Authors proposed two different deformation regimes: an

interface reaction controlled creep at low stresses and a grain boundary diffusion controlled

creep at high stresses. Lakki et al. [70] studied 2Y-TZP material using two techniques the

creep and the internal friction (it consists on applying a cyclic stress σ = σo cos (ωt) to a

sample and measuring its response in the form of strain, ε). Both techniques provide at low

stresses (< 15 MPa) close values of the activation energies and lead to conclusion that grain

boundary sliding is the main deformation mechanism. Owen and Chokshi [71] and Chokshi

[72] investigated 3Y-TZP. The experimental data over a wide range of stresses revealed a

transition in stress exponent. Deformation at low and high stress regions was associated

with m ≈ 3, p ≈ 1 and m ≈ 2, p ≈ 3, respectively. The activation energy was Q = 550 kJ/mol for

both regions. Authors postulated that the interface reaction is controlled at low stress

region and the grain boundary sliding at high stress region. Ghosh et al. [73] examined

effect of silica additions on creep behavior of 3Y-TZP. The determined results were verified

by tracer diffusion measurements. The creep data at high stresses are consisted with Coble

diffusion and creep at lower stresses is attributed to interface-controlled diffusion mecha-

nism. Addition of silica has only minor effect on both grain boundary and lattice diffusion.

Ghost and Chokshi [74] studied the creep of nanocrystalline 3Y-TZP who obtained results

indicating the same deformation mechanism as for micro-sized materials. Liu et al. [75]

examined creep behavior of zirconia stabilized with 2.5 mol%. They postulated the grain

boundary sliding accompanied by intergranular dislocation due to existence of amorphous

phases.
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5. Summary

The emphasis of this review was to compile existing data in the creep behavior of two types of

oxides: iron-row group M1�yO (M = Ni, Co, Fe) which properties are strongly related with the

oxygen partial pressure (pO2
) dependent departure from stoichiometry (y) and superionic

ZrO2-based materials. Two different approaches to creep methodology are used. In case of the

transition metal oxides such as M1�yO the creep experiments required determination of the

rate deformation ( _ε) as a function σ, T, pO2
and grain size (d) for polycrystalline materials. On

the other hand, the oxide superionics such as stabilized zirconia concentration of ionic defects

( V••

O

� �

) is fixed by the amount used stabilizer (usually Y2O3). Electronic defects (e
0 and h•) play

role only in the extremely reduced or oxidizing conditions (usually very hard to achieve

experimentally). Therefore, the creep rate is studied as a function σ, T and d in case of the

polycrystals.

From this review several general trends in creep behavior emerge. Deformation of single

crystals is typically controlled by dislocation glide on the most favorable slip system. On the

other hand, deformation of polycrystalline oxides is controlled by diffusion of the slowest

species along the fastest path, such as through the lattice, along grain boundaries or through

a second phase formed at the grain boundaries. Dislocations play a more or less important role

depending on the specific oxide.

Steady state creep of M1�yO appears to be controlled by oxygen diffusion through either

oxygen vacancies or interstitials. On the other hand in case of stabilized zirconia it is controlled

by cation diffusion (Zr4+ or Y3+). In any cases diffusion, involving both lattice and grain

boundary data are needed to verification of proposed mechanisms. Recently used secondary

ion mass spectrometry (SIMS) is suitable for this purpose [73, 76–78].
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