187 research outputs found
Hysteresis and competition between disorder and crystallization in sheared and vibrated granular flow
Experiments on spherical particles in a 3D Couette cell vibrated from below
and sheared from above show a hysteretic freezing/melting transition. Under
sufficient vibration a crystallized state is observed, which can be melted by
sufficient shear. The critical line for this transition coincides with equal
kinetic energies for vibration and shear. The force distribution is
double-peaked in the crystalline state and single-peaked with an approximately
exponential tail in the disordered state. A linear relation between pressure
and volume () exists for a continuum of partially and/or
intermittently melted states over a range of parameters
Velocity correlations in dense granular flows
Velocity fluctuations of grains flowing down a rough inclined plane are
experimentally studied. The grains at the free surface exhibit fluctuating
motions, which are correlated over few grains diameters. The characteristic
correlation length is shown to depend on the inclination of the plane and not
on the thickness of the flowing layer. This result strongly supports the idea
that dense granular flows are controlled by a characteristic length larger than
the particle diameter
Erosion waves: transverse instabilities and fingering
Two laboratory scale experiments of dry and under-water avalanches of
non-cohesive granular materials are investigated. We trigger solitary waves and
study the conditions under which the front is transversally stable. We show the
existence of a linear instability followed by a coarsening dynamics and finally
the onset of a fingering pattern. Due to the different operating conditions,
both experiments strongly differ by the spatial and time scales involved.
Nevertheless, the quantitative agreement between the stability diagram, the
wavelengths selected and the avalanche morphology reveals a common scenario for
an erosion/deposition process.Comment: 4 pages, 6 figures, submitted to PR
Effective boundary conditions for dense granular flows
We derive an effective boundary condition for granular flow taking into
account the effect of the heterogeneity of the force network on sliding
friction dynamics. This yields an intermediate boundary condition which lies in
the limit between no-slip and Coulomb friction; two simple functions relating
wall stress, velocity, and velocity variance are found from numerical
simulations. Moreover, we show that this effective boundary condition
corresponds to Navier slip condition when GDR MiDi's model is assumed to be
valid, and that the slip length depends on the length scale that characterises
the system, \emph{viz} the particle diameter.Comment: 4 pages, 5 figure
Flow of wet granular materials
The transition from frictional to lubricated flow of a dense suspension of
non-Brownian particles is studied. The pertinent parameter characterizing this
transition is the Leighton number ,
which represents the ratio of lubrication to frictional forces. The Leighton
number defines a critical shear rate below which no steady flow without
localization exists. In the frictional regime the shear flow is localized. The
lubricated regime is not simply viscous: the ratio of shear to normal stresses
remains constant, as in the frictional regime; moreover the velocity profile
has a single universal form in both frictional and lubricated regimes. Finally,
a discrepancy between local and global measurements of viscosity is identified,
which suggests inhomogeneity of the material under flow.Comment: Accepted for publication by Physical Review Letters (december 2004
The Behavior of Granular Materials under Cyclic Shear
The design and development of a parallel plate shear cell for the study of
large scale shear flows in granular materials is presented. The parallel plate
geometry allows for shear studies without the effects of curvature found in the
more common Couette experiments. A system of independently movable slats
creates a well with side walls that deform in response to the motions of grains
within the pack. This allows for true parallel plate shear with minimal
interference from the containing geometry. The motions of the side walls also
allow for a direct measurement of the velocity profile across the granular
pack. Results are presented for applying this system to the study of transients
in granular shear and for shear-induced crystallization. Initial shear profiles
are found to vary from packing to packing, ranging from a linear profile across
the entire system to an exponential decay with a width of approximately 6 bead
diameters. As the system is sheared, the velocity profile becomes much sharper,
resembling an exponential decay with a width of roughly 3 bead diameters.
Further shearing produces velocity profiles which can no longer be fit to an
exponential decay, but are better represented as a Gaussian decay or error
function profile. Cyclic shear is found to produce large scale ordering of the
granular pack, which has a profound impact on the shear profile. There exist
periods of time in which there is slipping between layers as well as periods of
time in which the layered particles lock together resulting in very little
relative motion.Comment: 10 pages including 12 figure
Dynamics of grain ejection by sphere impact on a granular bed
The dynamics of grain ejection consecutive to a sphere impacting a granular
material is investigated experimentally and the variations of the
characteristics of grain ejection with the control parameters are
quantitatively studied. The time evolution of the corona formed by the ejected
grains is reported, mainly in terms of its diameter and height, and favourably
compared with a simple ballistic model. A key characteristic of the granular
corona is that the angle formed by its edge with the horizontal granular
surface remains constant during the ejection process, which again can be
reproduced by the ballistic model. The number and the kinetic energy of the
ejected grains is evaluated and allows for the calculation of an effective
restitution coefficient characterizing the complex collision process between
the impacting sphere and the fine granular target. The effective restitution
coefficient is found to be constant when varying the control parameters.Comment: 9 page
Memory of the Unjamming Transition during Cyclic Tiltings of a Granular Pile
Discrete numerical simulations are performed to study the evolution of the
micro-structure and the response of a granular packing during successive
loading-unloading cycles, consisting of quasi-static rotations in the gravity
field between opposite inclination angles. We show that internal variables,
e.g., stress and fabric of the pile, exhibit hysteresis during these cycles due
to the exploration of different metastable configurations. Interestingly, the
hysteretic behaviour of the pile strongly depends on the maximal inclination of
the cycles, giving evidence of the irreversible modifications of the pile state
occurring close to the unjamming transition. More specifically, we show that
for cycles with maximal inclination larger than the repose angle, the weak
contact network carries the memory of the unjamming transition. These results
demonstrate the relevance of a two-phases description -strong and weak contact
networks- for a granular system, as soon as it has approached the unjamming
transition.Comment: 13 pages, 15 figures, soumis \`{a} Phys. Rev.
Frictionless bead packs have macroscopic friction, but no dilatancy
The statement of the title is shown by numerical simulation of homogeneously
sheared packings of frictionless, nearly rigid beads in the quasistatic limit.
Results coincide for steady flows at constant shear rate γ in the
limit of small γ and static approaches, in which packings are equilibrated
under growing deviator stresses. The internal friction angle ϕ, equal to
5.76 0.22 degrees in simple shear, is independent on the average pressure
P in the rigid limit. It is shown to stem from the ability of stable
frictionless contact networks to form stress-induced anisotropic fabrics. No
enduring strain localization is observed. Dissipation at the macroscopic level
results from repeated network rearrangements, like the effective friction
of a frictionless slider on a bumpy surface. Solid fraction Φ remains
equal to the random close packing value ≃ 0.64 in slowly or statically
sheared systems. Fluctuations of stresses and volume are observed to regress in
the large system limit, and we conclude that the same friction law for simple
shear applies in the large psystem limit if normal stress or density is
externally controlled. Defining the inertia number as I = γ m/(aP),
with m the grain mass and a its diameter, both internal friction
coefficient ∗ = tan ϕ and volume 1/Φ increase as
powers of I in the quasistatic limit of vanishing I, in which all mechanical
properties are determined by contact network geometry. The microstructure of
the sheared material is characterized with a suitable parametrization of the
fabric tensor and measurements of connectivity and coordination numbers
associated with contacts and near neighbors.Comment: 19 pages. Additional technical details may be found in v
The song of the dunes as a self-synchronized instrument
Since Marco Polo (1) it has been known that some sand dunes have the peculiar
ability of emitting a loud sound with a well defined frequency, sometimes for
several minutes. The origin of this sustained sound has remained mysterious,
partly because of its rarity in nature (2). It has been recognized that the
sound is not due to the air flow around the dunes but to the motion of an
avalanche (3), and not to an acoustic excitation of the grains but to their
relative motion (4-7). By comparing several singing dunes and two controlled
experiments, one in the laboratory and one in the field, we here demonstrate
that the frequency of the sound is the frequency of the relative motion of the
sand grains. The sound is produced because some moving grains synchronize their
motions. The existence of a velocity threshold in both experiments further
shows that this synchronization comes from an acoustic resonance within the
flowing layer: if the layer is large enough it creates a resonance cavity in
which grains self-synchronize.Comment: minor changes, essentially more references
- …