10,553 research outputs found

    A digitally controlled very high frequency synthesizer

    Get PDF
    Breadboard model of digitally controlled very high frequency synthesizer for use in aviation navigation receive

    Technique for extending the frequency range of digital dividers

    Get PDF
    A technique for extending the frequency range of a presettable digital divider is described. The conventional digital divider consists of several counter stages with the count of each stage compared to a preselected number. When the counts for all stages are equal to the preselected numbers, an output pulse is generated and all stages are reset. For high input frequencies, the least significant stage of the divider has to be reset in a very short time. This limits the frequency that can be handled by the conventional digital divider. This invention provides a technique in which the second least significant and higher stages are reset and the least significant stage is permitted to free-run. Hence, the time in which the reset operation can be performed is increased thereby extending the frequency range of the divider

    Critical psychiatry: A brief overview

    Get PDF
    Critical psychiatry has often been confused with what is widely known as 'anti-psychiatry'. In this article the distinction is clarified and the particular contribution critical psychiatry makes is outlined. That contribution is constructive criticism: of the relationship between medicine and mental health practice, of the way drug and psychotherapeutic treatments for mental health difficulties might be better understood. These have implications for everyday clinical practice and there is much to be gained by openly embracing the controversies critical psychiatry highlights

    Effect of wind on continental shelf carbon fluxes off southeast Australia: A numerical model

    Full text link
    A coupled physical-biological-chemical model is used to study the effect of upwelling-favorable and downwelling-favorable winds on carbon biogeochemistry on the continental shelf off the southeast Australian mainland. Along the continental shelf, from 30?S to 34?S, upwelling-favorable winds, with the aid of bottom Ekman transport, bring dissolved-inorganic-carbon (DIC)-rich slope waters onto the shelf, increasing the carbon held in shelf waters. For downwelling-favorable winds, bottom Ekman transport still lifts slope waters onto the shelf, but the slope water transport, and therefore carbon held, is reduced compared with the upwelling scenario. Under upwelling-favorable winds, filaments of DIC and dissolved-inorganic-nitrogen (DIN)-rich water reaching the surface produce an outgassing near the site of upwelling and absorption downstream due to primary productivity. In a region of the ocean that is generally absorbing, the net effect of upwelling is a reduced absorption of atmospheric CO2 as a result of the ratio of deep DIC and DIN (12.2:1 mol C:mol N) being greater than the Redfield ratio (6.625). Carbon fluxes in the waters off the southeast Australian mainland are variable in space, with the transport of continental shelf waters to deep waters occurring mainly where alongshore currents separate from the coast and flow over the 200-m isobath

    Mean winds of the mesosphere and lower thermosphere at 52° N in the period 1988?2000

    No full text
    International audienceA meteor radar in the UK (near 52° N) has been used to measure the mean winds of the mesosphere/lower-thermosphere (MLT) region over the period 1988?2000. The seasonal course and interannual variability is characterised and comparisons are made with a number of models. Annual mean wind trends were found to be + 0.37 ms-1 yr-1 for the zonal component and + 0.157 ms-1 yr-1 for the meridional component. Seasonal means revealed significant trends in the case of meridional winds in spring ( + 0.38 ms-1 yr-1) and autumn ( + 0.29 ms-1 yr-1), and zonal winds in summer ( + 0.48 ms-1 yr-1) and autumn ( + 0.38 ms-1 yr-1). Significant correlation coefficients, R, between the sunspot number and seasonal mean wind are found in four instances. In the case of the summer zonal winds, R = + 0.732; for the winter meridional winds, R = - 0.677; for the winter zonal winds, R = - 0.472; and for the autumn zonal winds R = + 0.508

    Statistical Topography of Glassy Interfaces

    Get PDF
    Statistical topography of two-dimensional interfaces in the presence of quenched disorder is studied utilizing combinatorial optimization algorithms. Finite-size scaling is used to measure geometrical exponents associated with contour loops and fully packed loops. We find that contour-loop exponents depend on the type of disorder (periodic ``vs'' non-periodic) and they satisfy scaling relations characteristic of self-affine rough surfaces. Fully packed loops on the other hand are unaffected by disorder with geometrical exponents that take on their pure values.Comment: 4 pages, REVTEX, 4 figures included. Further information can be obtained from [email protected]

    Ground-State Roughness of the Disordered Substrate and Flux Line in d=2

    Get PDF
    We apply optimization algorithms to the problem of finding ground states for crystalline surfaces and flux lines arrays in presence of disorder. The algorithms provide ground states in polynomial time, which provides for a more precise study of the interface widths than from Monte Carlo simulations at finite temperature. Using d=2d=2 systems up to size 4202420^2, with a minimum of 2×1032 \times 10^3 realizations at each size, we find very strong evidence for a ln2(L)\ln^2(L) super-rough state at low temperatures.Comment: 10 pages, 3 PS figures, to appear in PR

    Energetics and geometry of excitations in random systems

    Get PDF
    Methods for studying droplets in models with quenched disorder are critically examined. Low energy excitations in two dimensional models are investigated by finding minimal energy interior excitations and by computing the effect of bulk perturbations. The numerical data support the assumptions of compact droplets and a single exponent for droplet energy scaling. Analytic calculations show how strong corrections to power laws can result when samples and droplets are averaged over. Such corrections can explain apparent discrepancies in several previous numerical results for spin glasses.Comment: 4 pages, eps files include

    First excitations in two- and three-dimensional random-field Ising systems

    Full text link
    We present results on the first excited states for the random-field Ising model. These are based on an exact algorithm, with which we study the excitation energies and the excitation sizes for two- and three-dimensional random-field Ising systems with a Gaussian distribution of the random fields. Our algorithm is based on an approach of Frontera and Vives which, in some cases, does not yield the true first excited states. Using the corrected algorithm, we find that the order-disorder phase transition for three dimensions is visible via crossings of the excitations-energy curves for different system sizes, while in two-dimensions these crossings converge to zero disorder. Furthermore, we obtain in three dimensions a fractal dimension of the excitations cluster of d_s=2.42(2). We also provide analytical droplet arguments to understand the behavior of the excitation energies for small and large disorder as well as close to the critical point.Comment: 17 pages, 12 figure
    corecore