5 research outputs found

    Is Carbon Black a Suitable Model Colloidal Substrate for Diesel Soot?

    Get PDF
    Soot formation in diesel engines is known to cause premature engine wear. Unfortunately, genuine diesel soot is expensive to generate, so carbon blacks are often used as diesel soot mimics. Herein, the suitability of a commercial carbon black (Regal 250R) as a surrogate for diesel soot dispersed in engine base oil is examined in the presence of two commonly used polymeric lubricant additives. The particle size, morphology, and surface composition of both substrates are assessed using BET surface area analysis, TEM, and XPS. The extent of adsorption of a poly(ethylene-co-propylene) (dOCP) statistical copolymer or a polystyrene-block-poly(ethylene-co-propylene) (PS–PEP) diblock copolymer onto carbon black or diesel soot from n-dodecane is compared indirectly using a supernatant depletion assay technique via UV spectroscopy. Thermogravimetric analysis is also used to directly determine the extent of copolymer adsorption. Degrees of dispersion are examined using optical microscopy, TEM, and analytical centrifugation. SAXS studies reveal some structural differences between carbon black and diesel soot particles. The mean radius of gyration determined for the latter is significantly smaller than that calculated for the former, and in the absence of any copolymer, diesel soot suspended in n-dodecane forms relatively loose mass fractals compared to carbon black. SAXS provides evidence for copolymer adsorption and indicates that addition of either copolymer transforms the initially compact agglomerates into relatively loose aggregates. Addition of dOCP or PS–PEP does not significantly affect the structure of the carbon black primary particles, with similar results being observed for diesel soot. In favorable cases, remarkably similar data can be obtained for carbon black and diesel soot when using dOCP and PS–PEP as copolymer dispersants. However, it is not difficult to identify simple copolymer–particle–solvent combinations for which substantial differences can be observed. Such observations are most likely the result of dissimilar surface chemistries, which can profoundly affect the colloidal stability

    Roadmap on Li-ion battery manufacturing research

    Get PDF
    Growth in the Li-ion battery market continues to accelerate, driven primarily by the increasing need for economic energy storage for electric vehicles. Electrode manufacture by slurry casting is the first main step in cell production but much of the manufacturing optimisation is based on trial and error, know-how and individual expertise. Advancing manufacturing science that underpins Li-ion battery electrode production is critical to adding to the electrode manufacturing value chain. Overcoming the current barriers in electrode manufacturing requires advances in materials, manufacturing technology, in-line process metrology and data analytics, and can enable improvements in cell performance, quality, safety and process sustainability. In this roadmap we explore the research opportunities to improve each stage of the electrode manufacturing process, from materials synthesis through to electrode calendering. We highlight the role of new process technology, such as dry processing, and advanced electrode design supported through electrode level, physics-based modelling. Progress in data driven models of electrode manufacturing processes is also considered. We conclude there is a growing need for innovations in process metrology to aid fundamental understanding and to enable feedback control, an opportunity for electrode design to reduce trial and error, and an urgent imperative to improve the sustainability of manufacture

    Direct Observation of Dynamic Lithium Diffusion Behaviour in Nickel-Rich, LiNi0.8Mn0.1Co0.1O2 (NMC811) Cathodes using Operando Muon Spectroscopy

    No full text
    Ni-rich layered oxide cathode materials such as LiNi0.8Mn0.1Co0.1O2 (NMC811) are widely tipped as the next generation cathodes for lithium-ion batteries. The NMC class offer a high capacity but suffer an irreversible first cycle capacity loss, a result of slow Li+ diffusion kinetics at low state of charge. Understanding the origin of these kinetic hindrances to Li+ mobility inside the cathode is vital to negate the first cycle capacity loss in future materials design. Here, we report on the development of operando muon spectroscopy (ÎĽSR) to probe the Ă…-length scale Li+ ion diffusion in NMC811 during its first cycle, and how this can be compared to electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT). Volume-averaged muon implantation enables measurements which are largely unaffected by interface/surface effects, thus providing a specific characterisation of the fundamental bulk properties to complement the surface dominated electrochemical methods. First cycle measurements show that the bulk Li+ mobility is less affected than the surface Li+ mobility at depth of discharge, indicating that sluggish surface diffusion is the likely cause of first cycle irreversible capacity loss. Additionally, we demonstrate that trends in the nuclear field distribution width of the implanted muons during cycling correlate with those seen in differential capacity, suggesting the sensitivity of this ÎĽSR parameter to the transition metal (TM) redox and TM-O bond length changes
    corecore