352 research outputs found
Estudios epizootiológicos de Strelkovimermis spiculatus Poinar y Camino, 1986 (Nematoda, Mermithidae) en una población natural de Aedes albifasciatus Macquart (Diptera, Culicidae) en la Argentina
A nineteen month study was conducted under natural conditions on the mosquito parasite Strelkovimermis spiculatus in a population of its host Aedes albifasciatus in La Plata area, Argentina. The breeding site was sampled weekly frorn April, 1997 to October, 1998. lrnmature stages of Ae. albifasciatus were collected with a standard 300 mnl dipper. Each sarnple unit consisted of 100 dippers. Preparasitic stages of S. spiculatus, prevalence, intensity and sex ratio were determined. Prevalence ranged from 0% to 100%. Most infected larvae died dueto the parasite activity. The male-female ratio increased as the prevalence rate increased. Biological aspects of this nematod species under field conditions are also discussed.
Key words: Nematod, Mermithid, Neotropical mosquitoes,Aedes albifasciatus, Argentina.A nineteen month study was conducted under natural conditions on the mosquito parasite Strelkovimermis spiculatus in a population of its host Aedes albifasciatus in La Plata area, Argentina. The breeding site was sampled weekly frorn April, 1997 to October, 1998. lrnmature stages of Ae. albifasciatus were collected with a standard 300 mnl dipper. Each sarnple unit consisted of 100 dippers. Preparasitic stages of S. spiculatus, prevalence, intensity and sex ratio were determined. Prevalence ranged from 0% to 100%. Most infected larvae died dueto the parasite activity. The male-female ratio increased as the prevalence rate increased. Biological aspects of this nematod species under field conditions are also discussed.
Key words: Nematod, Mermithid, Neotropical mosquitoes,Aedes albifasciatus, Argentina.A nineteen month study was conducted under natural conditions on the mosquito parasite Strelkovimermis spiculatus in a population of its host Aedes albifasciatus in La Plata area, Argentina. The breeding site was sampled weekly frorn April, 1997 to October, 1998. lrnmature stages of Ae. albifasciatus were collected with a standard 300 mnl dipper. Each sarnple unit consisted of 100 dippers. Preparasitic stages of S. spiculatus, prevalence, intensity and sex ratio were determined. Prevalence ranged from 0% to 100%. Most infected larvae died dueto the parasite activity. The male-female ratio increased as the prevalence rate increased. Biological aspects of this nematod species under field conditions are also discussed.
Key words: Nematod, Mermithid, Neotropical mosquitoes,Aedes albifasciatus, Argentina
Vector Competence of Argentine Mosquitoes (Diptera: Culicidae) for West Nile virus (Flaviviridae: Flavivirus)
We examined the ability of Culex pipiens L. complex mosquitoes from Argentina to vector West Nile virus (WNV) to assess their role in the transmission of WNV in South America. Several egg rafts of Culex spp. were collected from different breeding sites in the suburbs of the city of La Plata, Argentina, and a subset of each progeny was scored with morphological and genetic species indicators. Surprisingly, we did not find Cx. pipiens form pipiens, but found evidence of genetic hybrids of Culex quinquefasciatus and Cx. pipiens f. molestus. We then used morphological traits to create two colonies predominantly composed of one of these two taxa, although some hybrids are likely to have been included in both. These colonies were used in vector competence studies using NY99 and WN02 genotype strains of WNV obtained in New York State. As controls, we also tested colonies of U.S. Cx. quinquefasciatus and Cx. pipiens f. molestus. Additional Culex larvae from three drainage ditches near the cities of La Plata and Berisso, Argentina, were identified by morphological and high-resolution molecular markers (microsatellites) as Cx.
quinquefasciatus Say, Cx. pipiens form molestus, and hybrids. Results indicate that Argentinian Culex are competent but only moderately efficient vectors of WNV and are less susceptible to this virus than comparable U.S. mosquito strains. Studies of vertical transmission of NY99 virus by Cx. pipiens f. molestus hybrids from Argentina yielded a minimal filial infection rate of 1.19 from females feeding during their second and later bloodmeals.Centro de Estudios Parasitológicos y de Vectore
Differential Effects of Temperature and Mosquito Genetics Determine Transmissibility of Arboviruses by <i>Aedes aegypti</i> in Argentina
Aedes aegypti (L.) (Diptera: Culicidae) have a global distribution and are the primary vector of a number of mosquito-borne viruses responsible for epidemics throughout the Americas. As in much of South America, the threat from pathogens including dengue virus (DENV; Flaviviridae, Flavivirus) and chikungunya virus (CHIKV; Togaviridae, Alphavirus) has increased in Argentina in recent years. The complexity of transmission cycles makes predicting the occurrence and intensity of arbovirus outbreaks difficult. To gain a better understanding of the risk of DENV and CHIKV in Argentina and the factors influencing this risk, we evaluated the role of population and temperature in the vector competence and vectorial capacity (VC) of Ae. aegypti from geographically and ecologically distinct locations. Our results demonstrate that intrinsic and extrinsic factors including mosquito population, viral species, and temperature significantly influence both vector competence and overall VC of Ae. aegypti in Argentina, yet also that the magnitude of these influences is highly variable. Specifically, results suggest that CHIKV competence is more dependent on mosquito genetics than is DENV competence, whereas temperature has a greater effect on DENV transmission. In addition, although there is an overall positive correlation between temperature and competence for both viruses, there are exceptions to this for individual virus?population combinations. Together, these data establish large variability in VC for these pathogens among distinct Ae. aegypti populations in Argentina and demonstrate that accurate assessment of arbovirus risk will require nuanced models that fully consider the complexity of interactions between virus, temperature, mosquito genetics, and hosts.Centro de Estudios Parasitológicos y de Vectore
Differential Effects of Temperature and Mosquito Genetics Determine Transmissibility of Arboviruses by <i>Aedes aegypti</i> in Argentina
Aedes aegypti (L.) (Diptera: Culicidae) have a global distribution and are the primary vector of a number of mosquito-borne viruses responsible for epidemics throughout the Americas. As in much of South America, the threat from pathogens including dengue virus (DENV; Flaviviridae, Flavivirus) and chikungunya virus (CHIKV; Togaviridae, Alphavirus) has increased in Argentina in recent years. The complexity of transmission cycles makes predicting the occurrence and intensity of arbovirus outbreaks difficult. To gain a better understanding of the risk of DENV and CHIKV in Argentina and the factors influencing this risk, we evaluated the role of population and temperature in the vector competence and vectorial capacity (VC) of Ae. aegypti from geographically and ecologically distinct locations. Our results demonstrate that intrinsic and extrinsic factors including mosquito population, viral species, and temperature significantly influence both vector competence and overall VC of Ae. aegypti in Argentina, yet also that the magnitude of these influences is highly variable. Specifically, results suggest that CHIKV competence is more dependent on mosquito genetics than is DENV competence, whereas temperature has a greater effect on DENV transmission. In addition, although there is an overall positive correlation between temperature and competence for both viruses, there are exceptions to this for individual virus?population combinations. Together, these data establish large variability in VC for these pathogens among distinct Ae. aegypti populations in Argentina and demonstrate that accurate assessment of arbovirus risk will require nuanced models that fully consider the complexity of interactions between virus, temperature, mosquito genetics, and hosts.Centro de Estudios Parasitológicos y de Vectore
Differential Effects of Temperature and Mosquito Genetics Determine Transmissibility of Arboviruses by <i>Aedes aegypti</i> in Argentina
Aedes aegypti (L.) (Diptera: Culicidae) have a global distribution and are the primary vector of a number of mosquito-borne viruses responsible for epidemics throughout the Americas. As in much of South America, the threat from pathogens including dengue virus (DENV; Flaviviridae, Flavivirus) and chikungunya virus (CHIKV; Togaviridae, Alphavirus) has increased in Argentina in recent years. The complexity of transmission cycles makes predicting the occurrence and intensity of arbovirus outbreaks difficult. To gain a better understanding of the risk of DENV and CHIKV in Argentina and the factors influencing this risk, we evaluated the role of population and temperature in the vector competence and vectorial capacity (VC) of Ae. aegypti from geographically and ecologically distinct locations. Our results demonstrate that intrinsic and extrinsic factors including mosquito population, viral species, and temperature significantly influence both vector competence and overall VC of Ae. aegypti in Argentina, yet also that the magnitude of these influences is highly variable. Specifically, results suggest that CHIKV competence is more dependent on mosquito genetics than is DENV competence, whereas temperature has a greater effect on DENV transmission. In addition, although there is an overall positive correlation between temperature and competence for both viruses, there are exceptions to this for individual virus?population combinations. Together, these data establish large variability in VC for these pathogens among distinct Ae. aegypti populations in Argentina and demonstrate that accurate assessment of arbovirus risk will require nuanced models that fully consider the complexity of interactions between virus, temperature, mosquito genetics, and hosts.Centro de Estudios Parasitológicos y de Vectore
Differential Effects of Temperature and Mosquito Genetics Determine Transmissibility of Arboviruses by Aedes aegypti in Argentina
Aedes aegypti (L.) (Diptera: Culicidae) have a global distribution and are the primary vector of a number of mosquito-borne viruses responsible for epidemics throughout the Americas. As in much of South America, the threat from pathogens including dengue virus (DENV; Flaviviridae, Flavivirus) and chikungunya virus (CHIKV; Togaviridae, Alphavirus) has increased in Argentina in recent years. The complexity of transmission cycles makes predicting the occurrence and intensity of arbovirus outbreaks difficult. To gain a better understanding of the risk of DENV and CHIKV in Argentina and the factors influencing this risk, we evaluated the role of population and temperature in the vector competence and vectorial capacity (VC) of Ae. aegypti from geographically and ecologically distinct locations. Our results demonstrate that intrinsic and extrinsic factors including mosquito population, viral species, and temperature significantly influence both vector competence and overall VC of Ae. aegypti in Argentina, yet also that the magnitude of these influences is highly variable. Specifically, results suggest that CHIKV competence is more dependent on mosquito genetics than is DENV competence, whereas temperature has a greater effect on DENV transmission. In addition, although there is an overall positive correlation between temperature and competence for both viruses, there are exceptions to this for individual virus?population combinations. Together, these data establish large variability in VC for these pathogens among distinct Ae. aegypti populations in Argentina and demonstrate that accurate assessment of arbovirus risk will require nuanced models that fully consider the complexity of interactions between virus, temperature, mosquito genetics, and hosts.Fil: Ciota, Alexander T.. Wadsworth Center. State of New York Department of Health; Estados UnidosFil: Chin, Pamela A.. Wadsworth Center. State of New York Department of Health; Estados UnidosFil: Ehrbar, Dylan J.. Wadsworth Center. State of New York Department of Health; Estados UnidosFil: Micieli, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Fonseca, Dina M.. Center For Vector Biology, Rutgers University; Estados UnidosFil: Kramer, Laura D.. Wadsworth Center. State of New York Department of Health; Estados Unido
Compton sources for the observation of elastic photon-photon scattering events
We present the design of a photon-photon collider based on conventional Compton gamma sources for the observation of elastic \u3b3\u3b3 scattering. Two symmetric electron beams, generated by photocathodes and accelerated in linacs, produce two primary gamma rays through Compton backscattering with two high energy lasers. The elastic photon-photon scattering is analyzed by start-to-end simulations from the photocathodes to the detector. A new Monte Carlo code has been developed ad hoc for the counting of the QED events. Realistic numbers of the secondary gamma yield, obtained by using the parameters of existing or approved Compton devices, a discussion of the feasibility of the experiment and of the nature of the background are presented
Activity of N-Acetylcysteine Alone and in Combination with Colistin against Pseudomonas aeruginosa Biofilms and Transcriptomic Response to N-Acetylcysteine Exposure
Chronic colonization by Pseudomonas aeruginosa is critical in cystic fibrosis (CF) and other chronic lung diseases, contributing to disease progression. Biofilm growth and a propensity to evolve multidrug resistance phenotypes drastically limit the available therapeutic options. In this perspective, there has been growing interest in evaluating combination therapies, especially for drugs that can be administered by nebulization, which allows high drug concentrations to be reached at the site of infections while limiting systemic toxicity. Here, we investigated the potential antibiofilm activity of N-acetylcysteine (NAC) alone and in combination with colistin against a panel of P. aeruginosa strains (most of which are from CF patients) and the transcriptomic response of a P. aeruginosa CF strain to NAC exposure. NAC alone (8,000 mg/L) showed a limited and strain-dependent antibiofilm activity. Nonetheless, a relevant antibiofilm synergism of NAC-colistin combinations (NAC at 8,000 mg/L plus colistin at 2 to 32 mg/L) was observed with all strains. Synergism was also confirmed with the artificial sputum medium model. RNA sequencing of NAC-exposed planktonic cultures revealed that NAC (8,000 mg/L) mainly induced (i) a Zn21 starvation response (known to induce attenuation of P. aeruginosa virulence), (ii) downregulation of genes of the denitrification apparatus, and (iii) downregulation of flagellar biosynthesis pathway. NAC-mediated inhibition of P. aeruginosa denitrification pathway and flagellum-mediated motility were confirmed experimentally. These findings suggested that NAC-colistin combinations might contribute to the management of biofilm-associated P. aeruginosa lung infections. NAC might also have a role in reducing P. aeruginosa virulence, which could be relevant in the very early stages of lung colonization. © 2022 Valzano et al
- …