82 research outputs found

    Extraction and sensitive detection of toxins A and B from the human pathogen Clostridium difficile in 40 seconds using microwave-accelerated metal-enhanced fluorescence.

    Get PDF
    Clostridium difficile is the primary cause of antibiotic associated diarrhea in humans and is a significant cause of morbidity and mortality. Thus the rapid and accurate identification of this pathogen in clinical samples, such as feces, is a key step in reducing the devastating impact of this disease. The bacterium produces two toxins, A and B, which are thought to be responsible for the majority of the pathology associated with the disease, although the relative contribution of each is currently a subject of debate. For this reason we have developed a rapid detection assay based on microwave-accelerated metal-enhanced fluorescence which is capable of detecting the presence of 10 bacteria in unprocessed human feces within 40 seconds. These promising results suggest that this prototype biosensor has the potential to be developed into a rapid, point of care, real time diagnostic assay for C. difficile

    Ultra-Fast and Sensitive Detection of Non-Typhoidal Salmonella Using Microwave-Accelerated Metal-Enhanced Fluorescence (“MAMEF”)

    Get PDF
    Certain serovars of Salmonella enterica subsp. enterica cause invasive disease (e.g., enteric fever, bacteremia, septicemia, meningitis, etc.) in humans and constitute a global public health problem. A rapid, sensitive diagnostic test is needed to allow prompt initiation of therapy in individual patients and for measuring disease burden at the population level. An innovative and promising new rapid diagnostic technique is microwave-accelerated metal-enhanced fluorescence (MAMEF). We have adapted this assay platform to detect the chromosomal oriC locus common to all Salmonella enterica subsp. enterica serovars. We have shown efficient lysis of biologically relevant concentrations of Salmonella spp. suspended in bacteriological media using microwave-induced lysis. Following lysis and DNA release, as little as 1 CFU of Salmonella in 1 ml of medium can be detected in <30 seconds. Furthermore the assay is sensitive and specific: it can detect oriC from Salmonella serovars Typhi, Paratyphi A, Paratyphi B, Paratyphi C, Typhimurium, Enteritidis and Choleraesuis but does not detect Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae or Acinetobacter baumanii. We have also performed preliminary experiments using a synthetic Salmonella oriC oligonucleotide suspended in whole human blood and observed rapid detection when the sample was diluted 1∶1 with PBS. These pre-clinical data encourage progress to the next step to detect Salmonella in blood (and other ordinarily sterile, clinically relevant body fluids)

    Controlled synthesis of monodisperse gold nanorods with different aspect ratios in the presence of aromatic additives

    Get PDF
    This paper reports the synthesis of monodisperse gold nanorods (GNRs) via a simple seeded growth approach in the presence of different aromatic additives, such as 7-bromo-3-hydroxy-2-naphthoic acid (7-BrHNA), 3-hydroxy-2-naphthoic acid (HNA), 5-bromosalicylic acid (5-BrSA), salicylic acid (SA) or phenol (PhOH). Effects of the aromatic additives and hydrochloric acid (HCl) on the structure and optical properties of the synthesized GNRs were investigated. The longitudinal surface plasmon resonance (LSPR) peak wavelength of the resulting GNRs was found to be dependent on the aromatic additive in the following sequence: 5-BrSA (778 nm) > 7-BrHNA (706 nm) > SA (688 nm) > HNA (676 nm) > PhOH (638 nm) without addition of HCl, but this was changed to 7-BrHNA (920 nm) > SA (890 nm) > HNA (872 nm) > PhOH (858 nm) > 5-BrSA (816 nm) or 7-BrHNA (1005 nm) > PhOH (995 nm) > SA (990 nm) > HNA (980 nm) > 5-BrSA (815 nm) with the addition of HCl or HNO3 respectively. The LSPR peak wavelength was increased with the increasing concentration of 7-BrHNA without HCl addition, however, there was a maximum LSPR peak wavelength when HCl was added. Interestingly, the LSPR peak wavelength was also increased with amount of HCl added. The results presented here thus established a simple approach to synthesize monodisperse GNRs of different LSPR wavelength

    Comparative effectiveness of venous thromboembolism prophylaxis options for the patient undergoing total hip and knee replacement: a network meta-analysis

    No full text
    Essentials: Despite trial data, guidelines have not endorsed direct oral Xa inhibitors above other options. We provide profiles of venous thromboembolism and hemorrhage risk for 12 options. Direct oral Xa inhibitors had a favorable profile compared with low-molecular-weight heparin. Other options did not have favorable profiles compared with low-molecular-weight heparin. SUMMARY: Background There are numerous trials and several meta-analyses comparing venous thromboembolism (VTE) prophylaxis options after total hip and knee replacement (THR and TKR). None have included simultaneous comparison of new with older options. Objective: To measure simultaneously the relative risk of VTE and hemorrhage for 12 prophylaxis options. Methods: We abstracted VTE and hemorrhage information from randomized controlled trials published between January 1990 and June 2016 comparing 12 prophylaxis options. We then constructed networks to compute the relative risk for each option, relative to once-daily dosing with low-molecular-weight heparin (LMWH) Low. Results Main: Relative to LMWH Low, direct oral Xa inhibitors had the lowest risk of total deep vein thrombosis (DVT)-asymptomatic and symptomatic- (odds ratio [OR], 0.45; 95% confidence interval [CI], 0.35-0.57), translating to 53-139 fewer DVTs per 1000 patients. Vitamin K antagonists (VKAs) titrated to International Normalized Ratio [INR] 2-3 predicted 56% more DVT events (OR, 1.56; 95% CI, 1.14-2.14). Aspirin performed similarly (OR, 0.80; 95% CI, 0.34-1.86), although small numbers prohibit firm conclusions. Direct oral Xa inhibitors did not lead to significantly more bleeding (OR, 1.21; 95% CI, 0.79-1.90). Secondary: Relative to LMWH Low, direct oral Xa inhibitors prevented 4-fold more symptomatic DVTs (OR, 0.25; 95% CI, 0.13-0.47). Conclusion: Relative to LMWH Low, direct oral Xa inhibitors had a more favorable profile of VTE and hemorrhage risk, whereas VKAs had a less favorable profile. The profile of other agents was not more or less favorable. Clinicians should consider these profiles when selecting prophylaxis options
    corecore