6 research outputs found

    Sub-Saharan Africa preparedness and response to the COVID-19 pandemic : A perspective of early career African scientists

    Get PDF
    Emerging highly transmissible viral infections such as SARS-CoV-2 pose a significant global threat to human health and the economy. Since its first appearance in December 2019 in the city of Wuhan, Hubei province, China, SARS-CoV-2 infection has quickly spread across the globe, with the first case reported on the African continent, in Egypt on February 14 th, 2020. Although the global number of COVID-19 infections has increased exponentially since the beginning of the pandemic, the number of new infections and deaths recorded in African countries have been relatively modest, suggesting slower transmission dynamics of the virus on the continent, a lower case fatality rate, or simply a lack of testing or reliable data. Notably, there is no significant increase in unexplained pneumonias or deaths on the continent which could possibly indicate the effectiveness of interventions introduced by several African governments. However, there has not yet been a comprehensive assessment of sub-Saharan Africa's (SSA) preparedness and response to the COVID-19 pandemic that may have contributed to prevent an uncontrolled outbreak so far. As a group of early career scientists and the next generation of African scientific leaders with experience of working in medical and diverse health research fields in both SSA and resource-rich countries, we present a unique perspective on the current public health interventions to fight COVID-19 in Africa. Our perspective is based on extensive review of the available scientific publications, official technical reports and announcements released by governmental and non-governmental health organizations as well as from our personal experiences as workers on the COVID-19 battlefield in SSA. We documented public health interventions implemented in seven SSA countries including Uganda, Kenya, Rwanda, Cameroon, Zambia, South Africa and Botswana, the existing gaps and the important components of disease control that may strengthen SSA response to future outbreaks

    Low pre-existing endemic human coronavirus (HCoV-NL63)-specific T cell frequencies are associated with impaired SARS-CoV-2-specific T cell responses in people living with HIV

    Get PDF
    Background: Understanding how HIV affects SARS-CoV-2 immunity is crucial for managing COVID-19 in sub-Saharan populations due to frequent coinfections. Our previous research showed that unsuppressed HIV is associated with weaker immune responses to SARS-CoV-2, but the underlying mechanisms are unclear. We investigated how pre-existing T cell immunity against an endemic human coronavirus HCoV-NL63 impacts SARS-CoV-2 T cell responses in people living with HIV (PLWH) compared to uninfected individuals, and how HIV-related T cell dysfunction influences responses to SARS-CoV-2 variants. Methods: We used flow cytometry to measure T cell responses following PBMC stimulation with peptide pools representing beta, delta, wild-type, and HCoV-NL63 spike proteins. Luminex bead assay was used to measure circulating plasma chemokine and cytokine levels. ELISA and MSD V-PLEX COVID-19 Serology and ACE2 Neutralization assays were used to measure humoral responses. Results: Regardless of HIV status, we found a strong positive correlation between responses to HCoV-NL63 and SARS-CoV-2. However, PLWH exhibited weaker CD4+ T cell responses to both HCoV-NL63 and SARS-CoV-2 than HIV-uninfected individuals. PLWH also had higher proportions of functionally exhausted (PD-1high) CD4+ T cells producing fewer proinflammatory cytokines (IFNγ and TNFα) and had elevated plasma IL-2 and IL-12(p70) levels compared to HIV-uninfected individuals. HIV status didn’t significantly affect IgG antibody levels against SARS-CoV-2 antigens or ACE2 binding inhibition activity. Conclusion: Our results indicate that the decrease in SARS-CoV-2 specific T cell responses in PLWH may be attributable to reduced frequencies of pre-existing cross-reactive responses. However, HIV infection minimally affected the quality and magnitude of humoral responses, and this could explain why the risk of severe COVID-19 in PLWH is highly heterogeneous

    Cohort-Specific Peptide Reagents Broaden Depth and Breadth Estimates of the CD8 T Cell Response to HIV-1 Gag Potential T Cell Epitopes

    No full text
    An effective HIV vaccine will need to stimulate immune responses against the sequence diversity presented in circulating virus strains. In this study, we evaluate breadth and depth estimates of potential T-cell epitopes (PTEs) in transmitted founder virus sequence-derived cohort-specific peptide reagents against reagents representative of consensus and global sequences. CD8 T-cells from twenty-six HIV-1+ PBMC donor samples, obtained at 1-year post estimated date of infection, were evaluated. ELISpot assays compared responses to 15mer consensus (n = 121), multivalent-global (n = 320), and 10mer multivalent cohort-specific (n = 300) PTE peptides, all mapping to the Gag antigen. Responses to 38 consensus, 71 global, and 62 cohort-specific PTEs were confirmed, with sixty percent of common global and cohort-specific PTEs corresponding to consensus sequences. Both global and cohort-specific peptides exhibited broader epitope coverage compared to commonly used consensus reagents, with mean breadth estimates of 3.2 (global), 3.4 (cohort) and 2.2 (consensus) epitopes. Global or cohort peptides each identified unique epitope responses that would not be detected if these peptide pools were used alone. A peptide set designed around specific virologic and immunogenetic characteristics of a target cohort can expand the detection of CD8 T-cell responses to epitopes in circulating viruses, providing a novel way to better define the host response to HIV-1 with implications for vaccine development

    Human Cytomegalovirus Infection Increases Both Antibody- and Non–Antibody-Dependent Cellular Reactivity by Natural Killer Cells

    No full text
    Background. Antibody-mediated rejection in solid organ transplantation is an important immunological barrier to successful long-term graft survival. Next to complement activation, natural killer (NK) cells have been implicated in the process. Human cytomegalovirus (CMV), independently associated with decreased graft survival, has a strong imprint on the immune response. Here, we assessed the effect of CMV status on alloreactive NK cell reactivity. Methods. We compared antibody-mediated NK cell cytolytic activity (CD107a expression) and IFNγ production between healthy CMV-seropositive (n = 8) and CMV-seronegative (n = 11) individuals, in cocultures of NK cells with anti-HLA class I or rituximab (control) antibody-coated Raji cells. Results. First, we showed that within the NKG2C+ NK cells, it is specifically the NKG2C+/A− subset that is enriched in CMV+ individuals. We then observed that in particular the NK cell antibody-dependent cell mediated cytotoxicity (ADCC), but also non-ADCC alloreactivity toward HLA-positive target cells was increased in CMV+ individuals as compared to CMV− ones. This enhanced ADCC as well as non-ADCC NK cell reactivity in CMV+ individuals was particularly characterized by a significantly higher number of ILT2+ and NKG2C+ NK cells that possessed cytolytic activity and/or produced IFNγ in response to HLA-positive target cells. Conclusions. With regard to organ transplantation, these data suggest that CMV infection enhances NK cell alloreactivity, which may pose an additional adverse effect on graft survival, especially in the presence of donor specific antibodies

    DataSheet_1_Low pre-existing endemic human coronavirus (HCoV-NL63)-specific T cell frequencies are associated with impaired SARS-CoV-2-specific T cell responses in people living with HIV.pdf

    No full text
    BackgroundUnderstanding how HIV affects SARS-CoV-2 immunity is crucial for managing COVID-19 in sub-Saharan populations due to frequent coinfections. Our previous research showed that unsuppressed HIV is associated with weaker immune responses to SARS-CoV-2, but the underlying mechanisms are unclear. We investigated how pre-existing T cell immunity against an endemic human coronavirus HCoV-NL63 impacts SARS-CoV-2 T cell responses in people living with HIV (PLWH) compared to uninfected individuals, and how HIV-related T cell dysfunction influences responses to SARS-CoV-2 variants.MethodsWe used flow cytometry to measure T cell responses following PBMC stimulation with peptide pools representing beta, delta, wild-type, and HCoV-NL63 spike proteins. Luminex bead assay was used to measure circulating plasma chemokine and cytokine levels. ELISA and MSD V-PLEX COVID-19 Serology and ACE2 Neutralization assays were used to measure humoral responses.ResultsRegardless of HIV status, we found a strong positive correlation between responses to HCoV-NL63 and SARS-CoV-2. However, PLWH exhibited weaker CD4+ T cell responses to both HCoV-NL63 and SARS-CoV-2 than HIV-uninfected individuals. PLWH also had higher proportions of functionally exhausted (PD-1high) CD4+ T cells producing fewer proinflammatory cytokines (IFNγ and TNFα) and had elevated plasma IL-2 and IL-12(p70) levels compared to HIV-uninfected individuals. HIV status didn’t significantly affect IgG antibody levels against SARS-CoV-2 antigens or ACE2 binding inhibition activity.ConclusionOur results indicate that the decrease in SARS-CoV-2 specific T cell responses in PLWH may be attributable to reduced frequencies of pre-existing cross-reactive responses. However, HIV infection minimally affected the quality and magnitude of humoral responses, and this could explain why the risk of severe COVID-19 in PLWH is highly heterogeneous.</p
    corecore