72 research outputs found

    Phase II Trial of Dasatinib for Patients with Acquired Resistance to Treatment with the Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors Erlotinib or Gefitinib

    Get PDF
    Introduction:Dual inhibition of SRC- and EGFR-dependent pathways may overcome acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) for patients with lung adenocarcinoma with EGFR mutations. The SRC inhibitor dasatinib demonstrates antitumor activity in gefitinib-resistant cells lines and xenografts. Dasatinib is tolerable for patients with advanced non-small cell lung cancer, and in combination with erlotinib.Methods:We conducted this phase II study of dasatinib 70 mg twice daily in patients with EGFR-mutant lung adenocarcinoma and acquired resistance to EGFR-TKIs. After a protocol amendment based on evolving data about both drugs, patients received dasatinib at a dose of 100 mg daily with continued erlotinib after developing acquired resistance. Enrolled patients either harbored an activating mutation in EGFR or experienced clinical benefit with single-agent erlotinib or gefitinib, followed by RECIST documented progression while being treated with an EGFR-TKI.Results:Twenty-one patients were enrolled, 9 under the original trial design and 12 after the protocol amendments. We observed no complete or partial responses (0% observed rate, 95% confidence interval: 0–18%). The median time to progression was 0.5 months (range, 0.2–1.8 months) in patients treated with dasatinib and 0.9 months (range, 0.4–5 months) for patients treated with dasatinib and erlotinib in combination. Pleural effusions and dyspnea were frequent toxicities.Conclusions:Dasatinib has no activity in patients with EGFR-mutant lung adenocarcinoma with acquired resistance to erlotinib and gefitinib

    Phase II Study of a Non-Platinum–Containing Doublet of Paclitaxel and Pemetrexed with Bevacizumab as Initial Therapy for Patients with Advanced Lung Adenocarcinomas

    Get PDF
    Many patients with lung cancers cannot receive platinum-containing regimens due to co-morbid medical conditions. We designed the PPB regimen of paclitaxel, pemetrexed, and bevacizumab to maintain or improve outcomes while averting the unique toxicities of platinum-based chemotherapies

    Glutamate Induces the Elongation of Early Dendritic Protrusions via mGluRs in Wild Type Mice, but Not in Fragile X Mice

    Get PDF
    Fragile X syndrome (FXS), the most common inherited from of autism and mental impairment, is caused by transcriptional silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein FMRP. Dendritic spines of cortical pyramidal neurons in affected individuals are abnormally immature and in Fmr1 knockout (KO) mice they are also abnormally unstable. This could result in defects in synaptogenesis, because spine dynamics are critical for synapse formation. We have previously shown that the earliest dendritic protrusions, which are highly dynamic and might serve an exploratory role to reach out for axons, elongate in response to glutamate. Here, we tested the hypothesis that this process is mediated by metabotropic glutamate receptors (mGluRs) and that it is defective in Fmr1 KO mice. Using time-lapse imaging with two-photon microscopy in acute brain slices from early postnatal mice, we find that early dendritic protrusions in layer 2/3 neurons become longer in response to application of glutamate or DHPG, a Group 1 mGluR agonist. Blockade of mGluR5 signaling, which reverses some adult phenotypes of KO mice, prevented the glutamate-mediated elongation of early protrusions. In contrast, dendritic protrusions from KO mice failed to respond to glutamate. Thus, absence of FMRP may impair the ability of cortical pyramidal neurons to respond to glutamate released from nearby pre-synaptic terminals, which may be a critical step to initiate synaptogenesis and stabilize spines

    A trial assessing N-3 as treatment for injury-induced cachexia (ATLANTIC trial): does a moderate dose fish oil intervention improve outcomes in older adults recovering from hip fracture?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proximal femoral fractures are associated with increased morbidity and mortality. Pre-existing malnutrition and weight loss amongst this patient group is of primary concern, with conventional nutrition support being largely ineffective. The inflammatory response post proximal femoral fracture surgery and the subsequent risk of cachexia may explain the inability of conventional high energy high protein management to produce an anabolic response amongst these patients. Omega-3 fatty acids derived from fish oils have been extensively studied for their anti-inflammatory benefits. Due to their anti-inflammatory properties, the benefit of fish oil combined with individualized nutrition support amongst proximal femoral fracture patients post surgery is an attractive potential therapeutic strategy. The aim of the ATLANTIC trial is to assess the potential benefits of an anti-inflammatory dose of fish oil within the context of a 12 week individualised nutrition program, commencing seven days post proximal femoral fracture surgery.</p> <p>Methods/Design</p> <p>This randomized controlled, double blinded trial, will recruit 150 community dwelling elderly patients aged ≥65 years, within seven days of surgery for proximal femoral fracture. Participants will be randomly allocated to receive either a 12 week individualized nutrition support program complemented with 20 ml/day anti-inflammatory dose fish oil (~3.6 g eicosapentaenoic acid, ~2.4 g docosahexanoic acid; intervention), or, a 12 week individualized nutrition support program complemented with 20 ml/day low dose fish oil (~0.36 g eicosapentaenoic acid, ~0.24 g docosahexanoic acid; control).</p> <p>Discussion</p> <p>The ATLANTIC trial is the first of its kind to provide fish oil combined with individualized nutrition therapy as an intervention to address the inflammatory response experienced post proximal femoral fracture surgery amongst elderly patients. The final outcomes of this trial will assist clinicians in the development of effective and alternative treatment methods post proximal femoral fracture surgery which may ultimately result in a reduction in systemic inflammation, loss of weight and lean muscle and improvements in nutritional status, mobility, independence and quality of life among elderly patients.</p> <p>Trial Registration</p> <p>ACTRN12609000241235</p

    Chronic Apocynin Treatment Attenuates Beta Amyloid Plaque Size and Microglial Number in hAPP(751)SL Mice

    Get PDF
    Background: NADPH oxidase is implicated in neurotoxic microglial activation and the progressive nature of Alzheimer’s Disease (AD). Here, we test the ability of two NADPH oxidase inhibitors, apocynin and dextromethorphan (DM), to reduce learning deficits and neuropathology in transgenic mice overexpressing human amyloid precursor protein with the Swedish and London mutations (hAPP(751)SL). Methods: Four month old hAPP(751)SL mice were treated daily with saline, 15 mg/kg DM, 7.5 mg/kg DM, or 10 mg/kg apocynin by gavage for four months. Results: Only hAPP(751)SL mice treated with apocynin showed reduced plaque size and a reduction in the number of cortical microglia, when compared to the saline treated group. Analysis of whole brain homogenates from all treatments tested (saline, DM, and apocynin) demonstrated low levels of TNFa, protein nitration, lipid peroxidation, and NADPH oxidase activation, indicating a low level of neuroinflammation and oxidative stress in hAPP(751)SL mice at 8 months of age that was not significantly affected by any drug treatment. Despite in vitro analyses demonstrating that apocynin and DM ameliorate Ab-induced extracellular superoxide production and neurotoxicity, both DM and apocynin failed to significantly affect learning and memory tasks or synaptic density in hAPP(751)SL mice. To discern how apocynin was affecting plaque levels (plaque load) and microglial number in vivo, in vitro analysis of microglia was performed, revealing no apocynin effects on beta-amyloid (Ab) phagocytosis, microglial proliferation, or microglial survival. Conclusions: Together, this study suggests that while hAPP(751)SL mice show increases in microglial number and plaque load, they fail to exhibit elevated markers of neuroinflammation consistent with AD at 8 months of age, which may be a limitation of this animal model. Despite absence of clear neuroinflammation, apocynin was still able to reduce both plaque size and microglial number, suggesting that apocynin may have additional therapeutic effects independent of anti-inflammatory characteristics

    Water T2 as an early, global and practical biomarker for metabolic syndrome: an observational cross-sectional study

    Get PDF
    Background: Metabolic syndrome (MetS) is a highly prevalent condition that identifies individuals at risk for type 2 diabetes mellitus and atherosclerotic cardiovascular disease. Prevention of these diseases relies on early detection and intervention in order to preserve pancreatic β-cells and arterial wall integrity. Yet, the clinical criteria for MetS are insensitive to the early-stage insulin resistance, inflammation, cholesterol and clotting factor abnormalities that char- acterize the progression toward type 2 diabetes and atherosclerosis. Here we report the discovery and initial charac- terization of an atypical new biomarker that detects these early conditions with just one measurement. Methods: Water T2, measured in a few minutes using benchtop nuclear magnetic resonance relaxometry, is exqui- sitely sensitive to metabolic shifts in the blood proteome. In an observational cross-sectional study of 72 non-diabetic human subjects, the association of plasma and serum water T2 values with over 130 blood biomarkers was analyzed using bivariate, multivariate and logistic regression. Results: Plasma and serum water T2 exhibited strong bivariate correlations with markers of insulin, lipids, inflamma- tion, coagulation and electrolyte balance. After correcting for confounders, low water T2 values were independently and additively associated with fasting hyperinsulinemia, dyslipidemia and subclinical inflammation. Plasma water T2 exhibited 100% sensitivity and 87% specificity for detecting early insulin resistance in normoglycemic subjects, as defined by the McAuley Index. Sixteen normoglycemic subjects with early metabolic abnormalities (22% of the study population) were identified by low water T2 values. Thirteen of the 16 did not meet the harmonized clinical criteria for metabolic syndrome and would have been missed by conventional screening for diabetes risk. Low water T2 values were associated with increases in the mean concentrations of 6 of the 16 most abundant acute phase proteins and lipoproteins in plasma. Conclusions: Water T2 detects a constellation of early abnormalities associated with metabolic syndrome, provid- ing a global view of an individual’s metabolic health. It circumvents the pitfalls associated with fasting glucose and hemoglobin A1c and the limitations of the current clinical criteria for metabolic syndrome. Water T2 shows promise as an early, global and practical screening tool for the identification of individuals at risk for diabetes and atherosclerosis

    Lung cancer

    No full text
    • …
    corecore