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Abstract 

Background:  Metabolic syndrome (MetS) is a highly prevalent condition that identifies individuals at risk for type 
2 diabetes mellitus and atherosclerotic cardiovascular disease. Prevention of these diseases relies on early detection 
and intervention in order to preserve pancreatic β-cells and arterial wall integrity. Yet, the clinical criteria for MetS are 
insensitive to the early-stage insulin resistance, inflammation, cholesterol and clotting factor abnormalities that char-
acterize the progression toward type 2 diabetes and atherosclerosis. Here we report the discovery and initial charac-
terization of an atypical new biomarker that detects these early conditions with just one measurement.

Methods:  Water T2, measured in a few minutes using benchtop nuclear magnetic resonance relaxometry, is exqui-
sitely sensitive to metabolic shifts in the blood proteome. In an observational cross-sectional study of 72 non-diabetic 
human subjects, the association of plasma and serum water T2 values with over 130 blood biomarkers was analyzed 
using bivariate, multivariate and logistic regression.

Results:  Plasma and serum water T2 exhibited strong bivariate correlations with markers of insulin, lipids, inflamma-
tion, coagulation and electrolyte balance. After correcting for confounders, low water T2 values were independently 
and additively associated with fasting hyperinsulinemia, dyslipidemia and subclinical inflammation. Plasma water T2 
exhibited 100% sensitivity and 87% specificity for detecting early insulin resistance in normoglycemic subjects, as 
defined by the McAuley Index. Sixteen normoglycemic subjects with early metabolic abnormalities (22% of the study 
population) were identified by low water T2 values. Thirteen of the 16 did not meet the harmonized clinical criteria for 
metabolic syndrome and would have been missed by conventional screening for diabetes risk. Low water T2 values 
were associated with increases in the mean concentrations of 6 of the 16 most abundant acute phase proteins and 
lipoproteins in plasma.

Conclusions:  Water T2 detects a constellation of early abnormalities associated with metabolic syndrome, provid-
ing a global view of an individual’s metabolic health. It circumvents the pitfalls associated with fasting glucose and 
hemoglobin A1c and the limitations of the current clinical criteria for metabolic syndrome. Water T2 shows promise as 
an early, global and practical screening tool for the identification of individuals at risk for diabetes and atherosclerosis.
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transverse relaxation time, type 2 diabetes mellitus, Atherosclerosis, cardiovascular disease
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Background
Metabolic syndrome (MetS) is one of the most prevalent 
public health problems of the twenty-first century [1–3]. 
In the US, approximately one-third of adults and half of 
those ≥ 60 years of age have MetS [2, 3]. Previously called 
insulin resistance syndrome or syndrome X, MetS can 
be defined in two ways [4–6]: (i) generally, as a constel-
lation of abnormalities that includes insulin resistance, 
glucose intolerance, abdominal obesity, elevated blood 
pressure, dyslipidemia, and/or a pro-inflammatory, pro-
thrombotic state, and (ii) specifically, as a set of clinical 
criteria and cutoffs. The definitions and criteria for MetS 
have been the subject of considerable debate [4–9]. The 
Cardiometabolic Think Tank was convened in 2014 in an 
attempt to develop a consensus on affirmed and emerg-
ing concepts as well as recommendations regarding MetS 
[5]. The concepts are sound, but questions remain about 
how best to capture the heterogeneity of MetS, particu-
larly the subtypes, stages and unmeasured or residual risk 
factors [5].

The primary importance of MetS is in identifying 
individuals at increased risk for type 2 diabetes and ath-
erosclerotic cardiovascular disease [5, 6, 10–14]. The pre-
vention of these diseases hinges on early detection and 
intervention in order to preserve pancreatic β-cell func-
tion and the integrity of the arterial wall [15, 16]. Yet, the 
clinical criteria and cutoffs for MetS appear to be insen-
sitive to the early-stage metabolic abnormalities that put 
individuals at risk.

In the progression toward type 2 diabetes, the hall-
mark early abnormality is insulin resistance [17]. Because 
of the compensatory hypersecretion of insulin by intact 
β-cells, fasting glucose levels remain in the normal 
range during early-stage insulin resistance [17–22]. By 
the time an individual develops impaired fasting glu-
cose (≥  100  mg/dL)—one criterion for MetS—a signifi-
cant decline in β-cell function has already occurred. This 
decline is characterized by a loss in first-phase insulin 
secretion [23]. In the VA Genetic Epidemiology Study, 
individuals with impaired fasting glucose and impaired 
glucose tolerance averaged a 70% decline in pancreatic 
insulin secretion compared with individuals with normal 
glucose tolerance, after correcting for variable degrees 
of insulin sensitivity [24]. Since the primary goal of type 
2 diabetes prevention is preserving β-cell function [25], 
the glucose criterion of MetS is inadequate for the early 
detection of diabetes risk.

Elevated fasting triglyceride level, another MetS cri-
terion, provides an alternative marker of early insulin 
resistance. However, the cutoff value may not be properly 
calibrated. In a study of 178 normoglycemic adults from 
New Zealand, 42% of whom had insulin resistance, the 
optimal triglyceride cutoff value was 1.5  mM (133  mg/

dL), rather than 1.7 mM (150 mg/dL) as specified in the 
MetS criteria. The 1.5  mM cutoff was rigorously cali-
brated against the euglycemic clamp, a direct measure of 
insulin sensitivity [26]. Waist circumference is another 
MetS criterion related to insulin resistance and obe-
sity. However, as acknowledged by the Cardiometabolic 
Health Alliance, waist circumference is an imperfect 
gauge of the ectopic lipid deposition and visceral adipos-
ity associated with type 2 diabetes risk [5].

With respect to atherosclerosis, early plaque forma-
tion is driven by inflammation and cholesterol deposition 
in the arterial wall [16, 27]. Yet, the MetS clinical crite-
ria do not include markers of inflammation and elevated 
cholesterol [4]. The prothrombotic state, characterized 
by increased fibrinogen, platelet and PAI-1 levels, also 
contribute to plaque progression and the triggering of 
cardiovascular events [28–30]. The MetS criteria do not 
include these measures either. One possible solution is to 
expand the harmonized definition of MetS into a larger, 
more comprehensive biomarker panel. However, with 
added measurements comes complexity and cost, which 
can render the use of biomarker panels impractical for 
population screening and front-line clinical monitor-
ing. There is an unmet need for simpler, more effective 
approaches.

Here we present an atypical new biomarker for MetS 
that does not rely on direct measures of glucose, triglyc-
erides, waist circumference, cholesterol, inflammatory 
markers or biomarker panels. Rather, it is based on the 
motional properties of water—by far, the most abundant 
molecule in the blood. Changes in the rotational and 
translational diffusion of water in plasma or serum can be 
monitored by T2, the transverse relaxation time constant. 
It can be measured using a simple benchtop implementa-
tion of nuclear magnetic resonance relaxometry [31].

This approach exploits the unique properties of water 
as a metabolic surveillance system, as water molecules 
form hydrogen bonds with virtually every protein and 
lipoprotein in plasma or serum. Each protein affects 
water T2 in a specific manner, depending its molecular 
weight, shape, water-binding properties and concentra-
tion [31]. A shift in the concentrations of a cassette of 
proteins and lipoproteins, as occurs in MetS, alters water 
mobility and reduces water T2 values. Thus, water T2 
simultaneously monitors the net response to changes in 
many blood proteins, providing a global view of an indi-
vidual’s metabolic state with just one measurement. The 
measurement can be made in a few minutes using a small 
volume of unmodified human plasma or serum, and 
requires no chemical reagents or reactions. Pending fur-
ther testing and validation, water T2 offers a surprisingly 
powerful, yet practical new tool for detecting metabolic 
syndrome and monitoring cardiometabolic health.
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Methods
Study design
This was a biomarker discovery study with an observa-
tional, cross-sectional design. Initially, it was designed to 
test the hypothesis that serum water T2 was associated 
with markers of insulin, glucose and lipid metabolism. 
Phase 1 was designed to collect data on 29 non-diabetic 
human subjects. The target number of subjects was 
derived from a power calculation with α = 0.05, β = 0.2 
(statistical power of 0.8) and a correlation coefficient of 
0.5 [32, 33]. The actual number of subjects analyzed in 
Phase 1 was 28.

Analysis of the Phase 1 data led to the observation that, 
in addition to insulin-, glucose- and lipid-related mark-
ers, water T2 appeared to be correlated with inflamma-
tory markers. So Phase 2 of the study added an expanded 
set of inflammatory and acute phase markers. The tar-
get number of 38 subjects for Phase 2 was derived from 
a power calculation with α  =  0.05, β  =  0.1 (statistical 
power of 0.9) and a correlation coefficient of 0.5 [32, 33]. 
The actual number of subjects analyzed in Phase 2 was 
44.

Therefore, the total number of subjects analyzed and 
reported here was 72: 28 in Phase 1 and 44 in Phase 2. 
Many biomarkers were collected in both Phase 1 and 2, 
while some were collected only in Phase 2.

Subject recruitment
Human subject volunteers were recruited with prior 
written informed consent into two protocols approved by 
the Institutional Review Board of the University of North 
Texas Health Science Center in Fort Worth (UNTHSC). 
One protocol recruited adult subjects from the student 
and staff population of UNTHSC, including spouses, 
friends and associates. The second protocol recruited 
Fort Worth community members enrolled in the Health 
& Aging Brain Study at UNTHSC [34]. Exclusion crite-
ria for the current study included diabetes (HbA1C ≥ 6.5, 
fasting plasma glucose  ≥  125  mg/dL or prior history/
diagnosis), active acute or chronic illness (C-reactive pro-
tein > 10 or history/diagnosis), history of bleeding disor-
ders or difficulty donating blood, confirmed or suspected 
pregnancy from medical history, or not fasting for 12 h. 
Inclusion criteria were ages 18 and up. A total of 87 sub-
jects were enrolled in the study, with 72 of the 87 sub-
jects qualified according to the inclusion and exclusion 
criteria.

All subjects completed a comprehensive medical his-
tory form and a follow-up interview prior to the day of 
blood draw. On the morning of the blood draw, anthro-
pometric measurements (height, weight, waist cir-
cumference, blood pressure and heart rate) were taken 
by the study nurse, and urine samples were screened 

for microalbuminuria using Chemstrip Micral (Roche 
Diagnostics).

Blood collection
Fasting blood samples were drawn at 7 a.m. by the study 
nurse following a standard order-of-draw protocol. For 
plasma preparation, blood was drawn into BD Vacutainer 
lavender-top tubes containing K2EDTA as the anticoag-
ulant. For serum used for NMR and viscosity measure-
ments, blood was drawn into plain glass red-top tubes 
lacking any gel separator or clot activators (BD models 
366,441 and 366,430) to avoid potential interference in 
the NMR and viscosity measurements. Every effort was 
made to collect enough blood to perform all planned 
measurements. However, there were instances where the 
amount of blood collected from a given subject was not 
sufficient or samples were rejected by the testing lab due 
to hemolysis or other reasons. That variability, along with 
a few laboratory errors (instrument malfunction, data not 
collected or accidentally overwritten), accounted for the 
test-to-test differences in sample size (n) for the meas-
urements listed in the tables. No attempts were made to 
interpolate or fill in missing data.

Blood sample processing, analysis and bio‑banking
The plasma and serum samples were processed imme-
diately after each blood draw. The serum samples 
were allowed to clot for 30  min, while plasma samples 
were being centrifuged. The first spin was at 3380  rpm 
(1590×g) for 10  min at room temperature to pellet and 
remove blood cells, followed by a second spin of the 
supernatant at 3800 rpm (2361×g) for 15 min to remove 
residual cells or debris. The presence of residual plate-
lets was ruled out by dynamic light scattering analysis 
of each twice-centrifuged sample using a Wyatt Mobius 
instrument. The water T2 measurements were per-
formed in triplicate on a sample of fresh plasma followed 
immediately by three repeats on fresh serum such that 
all water T2 measurements were completed within 2  h 
after the blood draw. Likewise, viscosity was measured 
on fresh serum and plasma samples within a few hours 
of the blood draw using a VISCOLab3000 instrument 
[35]. Aliquots of fresh serum were sent on ice to Athero-
tech, Inc. for Vertical Autoprofile (VAP) advanced lipo-
protein testing and to determine LDL-P, hs-CRP, GGT, 
homocysteine, and Lp(a). Other aliquots of fresh plasma 
and serum were temporarily stored at 4°C prior to being 
sent the same day to Quest or Labcorp for diagnostic 
testing. Plasma aliquots for amino acid analysis, gluca-
gon, fibrinogen, free fatty acids and proinsulin were fro-
zen immediately after preparation and stored at − 80 °C 
prior to shipment to Quest. Other individual aliquots of 
plasma and serum were frozen at − 80 °C for subsequent 
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in-house analysis using the following assay kits: apoli-
poprotein E concentration (Abcam, Ab108813), ORAC 
antioxidant capacity (Cell Biolabs, STA-345), protein 
carbonyl content (Cell Biolabs, STA-307), HNE (Cell 
Biolabs, STA-838), phospholipids (Wako Diagnostics, 
Assay Kit C), α2-macroglobulin (Abcam, ab108888), 
PAI-1 (Abcam, ab184863), neutrophil elastase (Abcam 
ab119553), soluble fibronectin (Abcam, ab181419), 
l-lactate (Abcam ab65331), endotoxin (Thermo Scien-
tific, PI88282), and staphylococcus enterotoxin (Creative 
Diagnostics, DEIA-CL032).

Cytokines were assayed using the V-PLEX platform 
from Meso Scale Discovery, with a customized human 
cytokine plate for IL-6, IL-1β, TNF-α and IL-10 (MSD, 
K151AOH-1). Adiponectin and Factor VII were assayed 
using MSD Plate K151BXC-1, and sICAM-1, using MSD 
Kit K151SUD-1. All tests using − 80 °C frozen specimens 
were performed on samples that underwent only one 
freeze–thaw cycle.

Benchtop nuclear magnetic resonance relaxometry
Measurements of T2, the transverse relaxation time 
constant, were performed at 37  °C using a Bruker Min-
ispec mq20 benchtop time-domain NMR instrument 
equipped with a 10  mm variable temperature probe 
(Model H20-10-25-AVGX). The 10 mm-diameter sample 
tube included a 3 mm coaxial insert (Norell NI10CCI-B), 
and the insert was filled to a sample height of 1 cm, cor-
responding to a sample volume of ~ 50 μL.

The modified Carr–Purcell–Meiboom–Gill (CPMG) 
pulse sequence we employed for T2 measurements is 
illustrated in Figure  1 of Ref. [31]. In our experience, a 
critical factor in obtaining high quality NMR relaxometry 
data with aqueous samples is to avoid radiation damping, 
particularly when higher magnetic fields and/or larger 
sample volumes are used (e.g., 10  mm tubes without a 
coaxial insert). The magnitude of the radiation damp-
ing depends on the particular instrument and probe 
design. We determined that the sample size in the coaxial 
insert was sufficiently small in this instrument to avoid 
radiation damping. Thus, it was not necessary to use the 
optional composite 180° pulse and Δ delay shown in the 
pulse sequence. Other experimental aspects pertinent 
to NMR data collection and analysis are detailed in Ref. 
[31].

Statistical analysis
The bivariate correlations, multiple and logistical regres-
sion analyses, categorical means comparisons, receiver 
operator characteristic curves and principal components 
analysis with variable clustering were performed using 
JMP Pro version 13.1 (SAS, Inc.) and GraphPad Prism v. 
6.05 (GraphPad Software, Inc.). The guiding principles 

for the statistical analyses were derived largely from the 
books by Motulsky and Huber [36, 37]. Regression resid-
uals were analyzed in GraphPad Prism using the strategy 
outlined by Klingenberger [38].

The bivariate correlation coefficients were calculated 
using three complementary methods: Pearson product-
moment r, Spearman ρ, and the Huber M-value [36, 
37]. These three estimators involve different assump-
tions about the data, and thus, have different strengths 
and weaknesses. Included among the assumptions for 
the Pearson r analysis is that both measures are sampled 
from a Gaussian distribution [36]. Analysis of the vari-
ables in this study revealed that more than half were not 
Gaussian distributed, as assessed using the D’Agostino–
Pearson omnibus normality test implemented in Graph-
Pad. However, a natural log transformation corrected the 
problem in nearly all cases (see Table 3, footnote c).

Another key assumption of the Pearson and Spearman 
correlations is that there are no outliers. Pearson is espe-
cially sensitive to outliers [36, 37, 39], which can lead to 
an over- or under-estimation of correlation coefficients. 
The Huber M-value has the distinct advantage of being 
robust to outliers [37]. Therefore, we chose to not elim-
inate any outliers, with the caveat that the Pearson and 
Spearman coefficients would be interpreted together 
with the Huber M-values and with careful inspection of 
the scatter plots.

In most cases, all three correlation coefficients 
had comparable values. Specific cases where outli-
ers appeared to cause a significant under-estimation of 
the Pearson or Spearman coefficients included HbA1c, 
serum % globulins, VLDL-C, Rem-C, platelet count, lym-
phocyte count, RDW, complement C4c, and anion gap, 
uncorrected. Cases where outliers may have caused an 
overestimation of Pearson and Spearman values were 
asparagine, PAI-1, and haptoglobin. For these reasons, 
the Huber M-value was taken as the single-best estimate 
of the correlation, especially in cases where outliers had 
an influence.

The use of all three methods was particularly use-
ful when correlations were ambiguous, i.e., when one 
method yielded a statistically significant result, while oth-
ers did not. One notable example was body-mass-index 
or BMI, where a weak but statistically significant Pearson 
correlation was observed with both plasma and serum 
water T2. However, the Spearman and Huber M-value 
coefficients were weaker and not statistically significant. 
Inspection of the scatter plots revealed that the Pearson 
analysis was heavily influenced by a single outlier point 
that fell well outside of the Huber 95% confidence ellipse. 
This point corresponded to the subject in this study with 
the highest BMI and one of the lowest water T2 val-
ues. However, this study contained mostly non-obese 
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individuals. Therefore, a proper assessment of the possi-
ble correlation between BMI and water T2 values in the 
context of obesity will require the study of a larger num-
ber of obese subjects. In the current study population, 
water T2 did not correlate with BMI.

Multiple linear regression models were built from 
Gaussian-distributed variables using the stepwise analy-
sis feature in JMP v. 13.1. Potential predictor variables 
were chosen from the output of the bivariate analyses 
(Table  3, Additional file  1: Tables S1, S2), and from the 
principal components analyses with variable clustering, 
i.e., the most representative variable in each cluster. The 
stepwise analysis provided starting points for the explo-
ration of different models and the reduction of possibili-
ties. Acceptable models satisfied all three of the following 
criteria: (1) the p values for all predictor variables in the 
model were significant at α = 0.05, (2) the model avoided 
overfitting, as assessed using k-fold cross validation with 
k =  10, and (3) the adjusted R2 was maximized, within 
the constraints of criteria (1) and (2). The highest number 
of predictor variables in our models was five, including 
the y-intercept. This number is consistent with the rule of 
thumb that models should contain no more than 1 pre-
dictor variable for every 8–10 observables (subjects).

For the comparison of two means, unpaired two-tailed 
t-tests were used to assess significance, assuming equal 
variances and that the data were sampled from a Gauss-
ian distribution. Five tests to confirm equal variances 
(O’Brien, Brown–Forsythe, Levene, Bartlett and 2-sided 
F-test) were performed as implemented in JMP 13.1. In 
one case specified in Table 4, equal variances could not 
be confirmed, so significance was assessed using the 
Welch test instead of the t test.

Receiver operator characteristic (ROC) curves were 
generated and evaluated using JMP 13.1. For determin-
ing the sensitivity, specificity and cutoff values for plasma 
and serum water T2, the McAuley Index value of ≤ 6.07 
was chosen as the categorical reference standard for 
early insulin resistance [26]. The equation for the McAu-
ley Index is provided in the abstract of Ref. [26], and the 
input values of fasting insulin and triglyceride are pro-
vided in Table  3 (“Method A”) of Ref. [26]. The optimal 
ROC cutoff points for plasma and serum water T2 were 
those that fell closest to the [0,1] coordinate, i.e., those 
which intersected with or closely approached the gray 45° 
tangent line shown for each ROC curve.

Results
Characteristics of the study population
The clinical characteristics of the human study popula-
tion are presented in Table  1. Overall, this was a fairly 
diverse group of asymptomatic, non-diabetic adult volun-
teers spanning a wide age range. The gender distribution 

was approximately equal. The 72 subjects included 35 
white, 23 Asian, 10 Hispanic and 4 African American 
individuals. The inclusion and exclusion criteria are 
specified in “Methods” section. As shown in Table  1, 
the mean values for the diagnostic markers fell near the 
middle of their normal reference ranges. With respect to 
glucose markers, 47 of the 72 subjects were normoglyce-
mic by American Diabetes Association criteria [40], with 
both fasting glucose < 100 mg/dL and HbA1c < 5.7%. The 
remaining 25 subjects had glucose and/or HbA1c values 
consistent with prediabetes.

Bivariate correlations between water T2 and blood 
biomarkers
The plasma and serum water T2 values were Gaussian 
distributed and exhibited high coefficients of variation 
(7–8%) across the study cohort (Table 1). This high vari-
ance did not result from imprecision in the NMR relax-
ometry measurements, as the coefficient of variation 
for multiple repeats on a single subject averaged  <  1%. 
Rather, the high variance was caused by subject-to-sub-
ject biological variation reflecting the range of metabolic 
health among the subjects.

To identify the specific factors governing this variation, 
up to 130 diagnostic blood biomarkers were measured for 
each subject and correlated with plasma and serum water 
T2 values. As detailed in Methods, the study was con-
ducted in two phases, with many biomarkers measured 
in both phases (n =  72), and some additional biomark-
ers measured only in Phase 2 (n = 44). While a number 
of markers showed significant correlations with plasma 
water T2 (Table 2, middle column), many others did not 
(Table 2, right column). Among those showing no corre-
lation were albumin and sodium, markers of a subject’s 
hydration status. In addition, markers related to para-
magnetic ions or their binding proteins (transferrin, total 
iron, total iron binding capacity, percent iron saturation, 
ferritin and ceruloplasmin) showed no correlation with 
plasma or serum T2, in spite of the inherent sensitivity of 
T2 to changes in paramagnetic ions. Thus, in this study 
population, variation in water T2 was not associated with 
variation in the subject’s hydration state or iron/copper 
status.

Bivariate scatterplots for the correlation between 
plasma water T2 and insulin C-peptide, the McAuley 
Index, total serum protein concentration, LDL-choles-
terol, triglycerides and complement C3 (measured clini-
cally as its stable conversion product C3c) are displayed 
in Fig. 1. The bivariate normal density ellipse, indicated in 
red, provides a visual indicator of the Huber correlation 
at the 95% confidence level. The Huber M-value has the 
advantage of being robust to outliers, as compared with 
the Pearson r and the Spearman ρ values [37, 41]. This 
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enabled us to analyze the correlations without excluding 
any real or perceived outliers, as detailed in “Methods” 
section.

Table 3 lists the statistically significant bivariate Huber 
correlation coefficients for biomarkers that were unam-
biguously correlated with both plasma and serum water 
T2. Strong correlations (0.5–0.7) were observed between 
water T2 and fasting insulin C-peptide, insulin, and pro-
insulin, as well as indices derived from insulin plus glu-
cose, or insulin plus triglycerides (Table 3, first section). 
Note that the correlation with fasting glucose, while sta-
tistically significant, is considerably weaker (~ 0.3). Also, 
strong correlations were observed with protein mark-
ers, specifically plasma and serum globulins, total serum 
and plasma proteins, plasma and serum viscosity, as well 
as alanine aminotransferase, a marker of liver function 
(Table 3, second section). However, no significant corre-
lations were observed with plasma and serum albumin, 

which account for ~ 60% of the total plasma and serum 
protein mass.

Correlation coefficients of  ~  0.4 to 0.6 were observed 
between water T2 and markers of cholesterol- and 
triglyceride-rich lipoproteins (Table  3, third section). 
Moreover, correlations were observed with markers of 
inflammation and coagulation (Table  3, fourth section), 
especially white blood cell count, fibrinogen, comple-
ment C3c and C4c, and C-reactive protein. Finally, sta-
tistically significant correlations were observed with 
electrolyte markers, namely lactate, total measured ani-
ons (Cl− + HCO3

−) and the anion gap (Table 3, last sec-
tion). Electrolyte abnormalities have been associated with 
insulin resistance, inflammation and high blood pressure 
in the National Health and Nutritional Examination Sur-
vey [42–44].

The association between plasma and serum water T2 
was very strong, with a correlation coefficient of 0.8. 

Table 1  Characteristics of the study population, n = 72

a  All blood samples were collected in the early morning after a 12-h overnight fast
b  Reference values from Quest Diagnostics and Atherotech, except where noted
c  Cutoff for normoglycemic population established in this study
d  Insulin cutoff from McAuley et al. [26]; insulin C-peptide cutoff established by linear regression with inulin

Parameter Mean ± S.D.a Rangea Reference valuesb

Age 39.5 ± 15.3 23–80 n/a

Gender n/a 34 female, 38 male n/a

Body-mass index (kg/m2) 26.1 ± 4.9 18.2–45.1 < 25 normal weight, 25–30 overweight, > 30 obese

Plasma T2 (ms) 764.4 ± 58.7 631–887 ≥ 745.0c

Serum T2 (ms) 818.4 ± 56.7 692–927 ≥ 811.8c

Glucose (mg/dL) 90.9 ± 7.7 71–115 < 100 non-diabetic
100–124 (pre-diabetic)

HbA1c (%) 5.5 ± 0.3 4.7–6.2 < 5.7 (non-diabetic)
5.7–6.4 (pre-diabetic)

Insulin C-peptide (ng/mL) 2.0 ± 0.9 0.7–5.1 0.8–3.9 (> 2.85, IRd)

Insulin (μU/mL 9.1 ± 6.0 2.2–40.1 2.0–19.6 (> 12.2, IRd)

Total serum protein (g/dL) 7.1 ± 0.4 6.2–8.0 6.1–8.1

Serum albumin (g/dL) 4.5 ± 0.3 3.6–5.1 3.6–5.1

Serum globulins (g/dL) 2.7 ± 0.4 1.8–3.3 1.9–3.7

Triglycerides (mg/dL) 117.6 ± 60.0 42–321 < 150

Total cholesterol (mg/dL) 187.0 ± 41.0 97–291 < 200

HDL-C (mg/dL) 53.3 ± 12.7 31–85 ≥ 40 (male); ≥ 50 (female)

LDL-C (mg/dL) 111.1 ± 34.7 42–191 < 130

WBC count (×103/μL) 6.5 ± 1.6 3.9–11.2 3.8–10.8

Neutrophil count (×103/μL) 3.6 ± 1.2 1.8–7.3 1.5–7.8

hs-CRP (mg/L) 2.3 ± 2.3 0.1–9.6 < 3.0 (low-to-average CV risk)
3.0–10.0 (high CV risk)
> 10.0 (infection/illness)

Sodium (mmol/L) 139.0 ± 2.7 131–146 135–146

Potassium (mmol/L) 4.2 ± 0.3 3.5–4.8 3.5–5.3

Total CO2, serum (mmol/L) 24.0 ± 2.3 16–29 19–30
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Fig. 1  Scatterplots for the bivariate correlations between plasma water T2 values and 6 diagnostic markers: a natural log of insulin C-peptide;  
b McAuley Index; c total serum protein; d low-density lipoprotein cholesterol; e triglycerides; f complement C3c. Each filled black circle represents a 
data point for an individual human subject. The red ellipse represents the Huber bivariate normal density at the 95% confidence level
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Table 3  Bivariate Huber correlation coefficients for water T2

Biomarkera,b,c n Plasma water T2 n Serum water T2

Insulin and glucose markers

 McAuley Indexd 70 + 0.64**** 69 + 0.70****

 Insulin C-peptide 70 − 0.65**** 69 − 0.45****

 HOMA-IRd (insulin c-peptide) 70 − 0.64**** 69 − 0.46****

 Insulin 70 − 0.57**** 69 − 0.60****

 HOMA-IRd (insulin) 70 − 0.56**** 69 − 0.58****

 QUICKId 70 + 0.60**** 69 + 0.57****

 FIRId 70 − 0.58**** 69 − 0.59****

 Glucose/insulin ratiod 70 + 0.55**** 69 +0.58****

 Glucose 70 − 0.28* 69 − 0.28*

 HbA1c 69 − 0.54**** 69 − 0.43***

 Proinsulin 42 − 0.53*** 43 − 0.60***

Protein, viscosity and liver function markers

 Total protein, serum 69 − 0.56**** 68 − 0.79****

 Serum globulins 69 − 0.53**** 68 − 0.65****

 Serum viscosity 65 − 0.30* 67 − 0.45***

 Total protein, plasma 41 − 0.55*** 42 − 0.72****

 Plasma globulins 41 − 0.66**** 42 − 0.69****

 Plasma viscosity 51 − 0.47*** 52 − 0.56****

 Alanine aminotransferase (ALT) 52 − 0.37** 50 − 0.35**

Lipid and lipoprotein markers

 Apolipoprotein B (apoB) 70 − 0.55**** 69 − 0.52****

 Non-high-density lipoprotein cholesterol 70 − 0.52**** 69 − 0.52****

 Low-density lipoprotein cholesterol (LDL-C) 70 − 0.50**** 69 − 0.53****

 LDL/HDL ratio 70 − 0.54**** 69 − 0.58****

 Total cholesterol 70 − 0.50**** 69 − 0.51****

 LDL particle number (LDL-P) 70 − 0.52**** 68 − 0.54****

 Triglycerides (TG) 70 − 0.54**** 69 − 0.54****

 TG/HDL ratio 70 − 0.46**** 69 − 0.49****

 Phospholipids 65 − 0.44*** 66 − 0.41**

 Very low-density lipoprotein-chol. (VLDL-C) 63 − 0.44*** 62 − 0.49****

 Intermediate-density lipoprotein-chol. (IDL-C) 63 − 0.39** 62 − 0.50****

 Remnant-cholesterol (Rem-C)e 63 − 0.44*** 62 − 0.53****

 Apo B/Apo A–I ratio 63 − 0.53**** 62 − 0.56****

Inflammation and blood cell markers

 White blood cell count (WBC) 69 − 0.58**** 68 − 0.47****

 Neutrophil count 69 − 0.41*** 68 − 0.37**

 Lymphocyte count 69 − 0.40*** 68 − 0.36**

 C-reactive protein (CRP) 69 − 0.51**** 68 − 0.31**

 Serum % globulins 69 − 0.46**** 68 − 0.50****

 Plasma % globulins 41 − 0.56*** 42 − 0.45**

 Fibrinogen 43 − 0.65**** 44 − 0.40**

 Complement C3c 40 − 0.52*** 41 − 0.44**

 Complement C4c 40 − 0.59**** 41 − 0.43**



Page 10 of 19Robinson et al. J Transl Med  (2017) 15:258 

However, some biomarkers correlated with plasma, but 
not serum, water T2 or vice versa. Those that correlated 
only with plasma water T2 include platelet and monocyte 
counts, red cell distribution width, mean corpuscular 
volume, mean corpuscular hemoglobin, serine, aspara-
gine, glutamine, threonine, β-alanine, chloride, gamma 
glutamyl transferase, erythrocyte sedimentation rate, 
plasminogen activator inhibitor-1, α1-acid glycoprotein 
and interleukin-6. Those that correlated only with serum 
water T2 included immunoglobulin G, lipoprotein-asso-
ciated phospholipase A2, red blood cell count, tyrosine 
and 3-methyl histidine. Full sets of Pearson, Spearman 
and Huber correlation coefficients are provided in Addi-
tional file  1: Tables S1 and S2 for plasma water T2 and 
serum water T2, respectively.

The overall pattern of correlations is consistent with key 
elements of insulin resistance and the metabolic syndrome, 
namely hyperinsulinemia, dyslipidemia, pro-inflammation, 
pro-coagulation, and electrolyte imbalances. In all five cat-
egories, plasma and serum water T2 values were inversely 
correlated with those metabolic abnormalities.

Of note, water T2 measurements did not correlate with 
body-mass index or waist circumference, at least in this 
mostly non-obese population. Also, plasma and serum 
water T2 did not correlate with free fatty acid levels or 
with age. The mean plasma water T2 value was lower in 
women than men, but this difference was not statisti-
cally significant (752.1 vs. 775.3, p = 0.104). By contrast, 
the mean serum water T2 values were nearly identical in 
women and men (817.0 vs. 819.8, p =  0.838). The pos-
sible gender difference seen with plasma but not serum 
water T2 could be attributed to a higher level of fibrino-
gen observed for women vs. men, although the gender 

difference in fibrinogen did not reach statistical signifi-
cance (289.4 vs. 255.9, p = 0.091).

The inflammatory markers showed weaker correlation 
coefficients with serum water T2 (~ 0.3 to 0.5; Table 3) as 
compared with plasma water T2 (~  0.4 to 0.7, Table  3). 
The primary difference between plasma and serum is the 
absence of fibrinogen or Factor I in serum [45], provid-
ing an explanation for the weaker correlations observed 
for serum water T2. Fibrinogen is a key reporter that 
connects plasma water T2 with inflammation and coag-
ulation status. However, fibrinogen is not the only such 
reporter, as discussed below.

Principal components analysis with variable clustering
The observed bivariate correlations led us to consider factors 
that may contribute directly to the variation in plasma and 
serum water T2, as well as those that may be indirectly linked 
through another variable or a network of variables. Human 
blood plasma is a complex mixture containing hundreds of 
different proteins and lipoproteins as well as numerous small 
molecule metabolites. At first thought, de-convoluting these 
myriad variables would seem hopelessly complex. How-
ever, water mobility, and hence water T2, is affected mainly 
by its binding to macromolecules, as the influence of small 
molecule metabolites such as glucose is negligible [46]. 
Moreover, the sixteen most abundant proteins and lipopro-
teins in plasma (albumin, IgG, transferrin, fibrinogen, IgA, 
α2-macroglobulin, apolipoprotein AI, α1-antitrypsin, com-
plement C3, IgM, haptoglobin, apolipoprotein B, α1-acid 
glycoprotein, apolipoprotein E, complement C4, and cerulo-
plasmin) account for > 99% of the total plasma protein mass. 
Thus, identifying the primary variables that contribute to 
water T2 is not an intractable problem.

* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001
a  All blood samples were collected in the early morning following a 12-h overnight fast
b  This table includes only those biomarkers that were unambiguously correlated with both plasma and serum water T2. Results for markers that correlated with 
plasma or serum water T2, but not both, are discussed in the text and provided in Additional file 1: Tables S1 and S2. Ambiguous correlations are discussed in 
“Methods” section
c  Many of the variables were natural-log transformed in order to meet the normality condition, an assumption inherent to the Pearson correlation. The correlation 
coefficients reported here and in Additional file 1: Tables S1 and S2 are for the ln-transformed variables, except the McAuley Index and QUICKI, as these indices are 
inherently ln-transformed. Other variables that were normally distributed and analyzed without ln transformation were plasma and serum T2, total serum and plasma 
protein, serum and plasma globulins and % globulins, serum and plasma viscosity, HbA1c, LDL-C, LDL-P, total C, apolipoprotein B, lymphocyte and platelet counts, 
lactate, and complement C3c
d  As defined elsewhere: McAuley Index [26], HOMA-IR [66, 67], FIRI [68], QUICKI [69], and G/I ratio [70]
e  Remnant cholesterol is defined as intermediate-density lipoprotein (IDL) plus VLDL3, as determined using the vertical autoprofile method [71]

Table 3  continued

Biomarkera,b,c n Plasma water T2 n Serum water T2

Electrolyte markers

 Lactate 41 − 0.53*** 42 − 0.49***

 Anion Gap, uncorrected 69 − 0.55**** 68 − 0.43***

 Anion Gap, corrected for [albumin] 68 − 0.44*** 67 − 0.39***

 Cl− + CO2 (HCO3
−) 69 + 0.36** 68 + 0.30*
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We used three approaches to reduce the complexity 
of the network and tease apart variables that contrib-
ute independently and/or additively to the variation in 
plasma and serum water T2. The first approach utilized 
a principal components analysis with variable clustering 
[47]. This algorithm reduced the dimensionality by iden-
tifying clusters of variables that are most closely related. 
The results of one such analysis are presented in Addi-
tional file 1: Table S3. The statistical clusters correspond 
largely to the categories of markers based on physiologi-
cal considerations. In the example shown in Additional 
file  1: Table S3, cluster 1 represents insulin and glucose 
markers; clusters 2–4, protein and viscosity markers; 
cluster 5, lipid and lipoprotein markers, clusters 6–8, 
inflammation markers; and cluster 9, electrolyte mark-
ers. One benefit of this analysis was to define the “most 
representative variable” in each category, which served as 
a starting point for building multiple regression models.

Multiple regression analysis
The second approach to reducing the complexity of the 
variable network used multiple regression to control 
for the effect of confounders and identify variables that 
have independent contributions to plasma water T2. The 
parameters for four of the best multiple regression mod-
els for plasma water T2 are provided in Additional file 1: 
Table S4. Model 1 was derived using variables collected 
in both phases of the study (72 subjects), while Models 
2–4 included at least one variable that was measured 
only in Phase 2 (44 subjects). These models accounted 
for approximately two-thirds to three-fourths of the 
variation in plasma water T2. Attempts to add more vari-
ables to the models resulted in overfitting, as assessed 
using k-fold cross validation and described in “Methods” 
section.

The primary independent contributors to plasma 
water T2 were (1) insulin c-peptide, (2) total serum or 
plasma protein, plasma globulins, or plasma viscosity, 
(3) total cholesterol or apolipoprotein B, and (4) white 
blood cell count or fibrinogen. In general, one biomarker 
from each of four categories (insulin, proteins, lipids 
and inflammation) had independent contributions to the 
variation in plasma water T2. A key observation was that 
plasma water T2 was correlated with markers of insulin 
resistance or metabolic syndrome, even after correcting 
for total serum or plasma protein, serum or plasma glob-
ulins, or plasma viscosity. Attempts to correct for BMI 
and age did not yield statistical significance for those 
variables. Likewise, variables in the electrolyte category 
did not display a contribution to plasma water T2 inde-
pendent of the other four categories. However, lactate 
could be substituted for insulin c-peptide or insulin in 
models for serum water T2. Multiple regression models 

for serum water T2 were similar to those for plasma 
water T2. Examples are presented in Additional file  1: 
Table S5.

Categorical and logistic regression analyses
The third approach used categorical, rather than continu-
ous, variables to compare means and assess the additivity 
of contributions to plasma water T2. As shown in Table 4, 
the subjects were categorized as having or not having 
hyperinsulinemia, dyslipidemia, inflammation or electro-
lyte abnormalities, using three measures of each condi-
tion. In addition, the subjects were categorized as having 
or not having clinically-defined metabolic syndrome. The 
differences in mean plasma water T2 values were com-
puted for each of the measures and conditions. The dif-
ferences were greater when two or more conditions were 
combined. The largest difference in mean plasma water 
T2 values was observed for subjects who had hyperin-
sulinemia plus dyslipidemia plus inflammation (Table 4, 
last row). Thus, the lowest plasma water T2 values were 
observed in subjects who had multiple elements of early 
metabolic syndrome, as the effect on T2 has both inde-
pendent and additive components.

To further assess the dose–response relationship 
between the number of metabolic conditions and plasma 
water T2, the subjects were divided into quintiles with 
respect to T2 values, and the average number of condi-
tions for each quintile was calculated on a scale of 0–4. 
The average number of conditions increased from 0.71 
(top quintile) to 1.57, 2.36, 2.79, and 3.57 for the 4th, 3rd, 
2nd and lowest quintiles of plasma water T2, respectively. 
The lower the T2 value, the greater the number of condi-
tions associated with metabolic syndrome.

To further quantify the association of plasma water T2 
with these conditions, logistic regression models were 
constructed with each of the conditions in Table 4 serv-
ing as the categorical outcome. Each model was adjusted 
for potential confounders, specifically BMI, age and gen-
der. For hyperinsulinemia, the unit odds ratio for plasma 
water T2 was 1.034 (95% confidence limits 1.016–1.053, 
p < 0.0001). Thus, the observed 67.4 ms decrease in mean 
plasma water T2 increased the odds of hyperinsulinemia 
by a factor of 1.03467.4 = 9.5. The corresponding unit odds 
ratio for serum water T2 and hyperinsulinemia was 1.026 
(1.011–1.041, p < 0.0001). When dyslipidemia was the cat-
egorical outcome, the unit odds ratios were 1.028 (1.013–
1.044, p < 0.0001) and 1.030 (1.015–1.047, p < 0.0001) for 
plasma and serum water T2, respectively. This translated 
into an odds ratio of 5.8 for the decrease in mean plasma 
water T2 associated with dyslipidemia (Table 4).

Even higher unit odds ratios were observed when 
inflammation was the categorical outcome: 1.034 (1.017–
1.052, p  <  0.0001) and 1.040 (1.019–1.061, p  <  0.0001) 
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for plasma and serum water T2, respectively. Thus, the 
observed 69.9  ms decrease in mean plasma water T2 
translated into a 10.4-fold increase in the odds of having 
inflammation (Table  4). Smaller, but statistically signifi-
cant odds ratios were observed when the categorical out-
come was electrolyte abnormalities. Subjects who met the 
clinical criteria for metabolic syndrome as a whole had 
lower T2 values and higher odds ratios as well (Table 4).

The large decrease in mean water T2 values and high 
odds ratios provide further evidence of the strong asso-
ciation between water T2 and elements of the metabolic 
syndrome.

Sensitivity and specificity from ROC analysis
As an initial attempt to assess the sensitivity and specific-
ity of water T2 for detecting elements of early metabolic 
syndrome, we performed a receiver operator characteris-
tic curve (ROC) analysis. Insulin resistance, as defined by 
the McAuley Index, was used as the reference standard. 

The McAuley Index combines input from fasting triglyc-
erides and fasting insulin and thus, captures two related 
elements of MetS. Moreover, the McAuley Index was 
rigorously calibrated with 178 normoglycemic subjects 
using a direct measure of insulin sensitivity, obtained 
from the euglycemic clamp, as the outcome variable [26]. 
Thus, it was calibrated to detect the earliest stage of insu-
lin resistance. We categorized the 47 normoglycemic 
subjects in the current study using the McAuley Index 
cutoff of ≤  6.07, derived using a fasting insulin of 12.2 
μU/mL and a fasting triglyceride of 1.5 mM (133 mg/dL) 
as input variables [26]. As illustrated by the blue curve 
in Fig. 2, plasma water T2 detects early insulin resistance 
with a sensitivity of 100% and a specificity of 87% at a cut-
off value of ≤ 745.0 ms. The area under the curve (AUC) 
is 0.96. By contrast, HbA1c and glucose—the tools most 
widely used for diabetes screening and risk assessment—
show lower values of area-under-the-curve (AUC) and 
lower combinations of sensitivity and specificity (Fig.  2, 

Table 4  Mean plasma water T2 values for conditions and measures associated with early metabolic syndrome

* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
a  This analysis included variables collected in both Phase 1 and Phase 2 of this study (n = 72)
b  Mean difference (Δ) and odds ratio (95% confidence limits) for the mean difference shown one column to the left
c  Top tertile of subjects in this study
d  Obtained using formula in abstract of ref [26], with insulin = 12.2 μIU/mL and triglyceride = 1.5 mM as input
e  For this row, the Welch test was used in place of the t test, as equal variances could not be confirmed
f  Total measured anions, where ~ 95% of total CO2 is HCO3

−; bottom tertile of subjects in this study
g  Anion gap corrected for albumin concentration using regression residuals; top tertile of subjects in this study

Conditions and measuresa Cutoff value Mean plasma T2 (ms) ± S.E.

No Yes Δb Odds ratiob

Hyperinsulinemia (H) Any of 3 below 796.1 ± 7.9 728.7 ± 8.4 67.4**** 9.5 (2.9–32.5)****

 High fasting insulinc ≥ 10.0 μIU/mL 786.6 ± 7.4 721.7 ± 10.2 65.0****

 High insulin C-peptidec ≥ 2.3 mg/mL 780.7 ± 8.0 733.1 ± 11.1 47.6***

 Low McAuley Indexd ≤ 6.07 778.1 ± 7.2 718.1 ± 13.3 60.0***

Dyslipidemia (D) Any of 3 below 798.1 ± 8.6 734.3 ± 8.1 63.8**** 5.8 (2.3–15.6)****

 High non-HDL-Cc ≥ 149 mg/dL 782.4 ± 7.9 729.8 ± 10.9 52.6***

 Small, dense LDL Pattern B/AB 778.0 ± 8.1 736.4 ± 11.6 41.6**

 High LDL-Pc ≥ 1408 nM 779.1 ± 8.0 734.2 ± 11.5 44.9**

Inflammation (I)e Any of 3 below 808.3 ± 9.4 738.4 ± 7.3 69.9**** 10.4 (3.2–35)****

 High CRPc ≥ 2.5 mg/L 778.4 ± 7.6 725.1 ± 12.9 53.2***

 High WBC countc ≥ 6.92 × 103/μL 780.3 ± 8.3 737.3 ± 10.8 43.0**

 High serum globulinsc ≥ 2.9 g/dL 788.5 ± 7.7 725.8 ± 9.7 62.7****

Electrolyte abnormal Any of 3 below 784.8 ± 10.3 747.3 ± 8.8 37.5** 1.6 (1.1–2.3)*

 Low (Cl− + CO2)f ≤ 126 meq/L 776.5 ± 9.0 745.6 ± 10.3 30.8*

 High anion gapc ≥ 17.8 meq/L 777.8 ± 7.9 731.6 ± 11.6 46.2**

 High anion gap corr.g ≥ 17.7 meq/L 776.8 ± 8.1 742.0 ± 11.3 34.8*

Metabolic syndrome Ref. [4] 776.0 ± 7.4 721.6 ± 14.1 54.5** 2.7 (1.2–5.9)**

H + ≥ 1 other condition See above 796.8 ± 7.6 725.8 ± 8.3 71.1**** 15 (4–63)****

H + ≥ 2 other conditions See above 792.6 ± 6.9 716.5 ± 9.0 76.1**** 17 (4–73)****

H + D + I See above 786.5 ± 6.5 705.0 ± 10.6 81.4**** 24 (5–-124)****
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red and yellow, respectively). To detect early insulin 
resistance with 100% sensitivity, the HbA1c cutoff would 
have to be lowered to 5.4, which would lead to poor spec-
ificity and a 42% false positive rate.

For plasma water T2, the likelihood ratio for a positive 
test result (LR+) was 7.8. The likelihood ratio for a nega-
tive result (LR−) was zero.

Serum water T2 yielded ROC curve parameters similar 
to those of plasma: AUC = 0.94 with a sensitivity of 100% 
and specificity of 80% at a cutoff value of ≤ 811.8 ms. The 
LR+ and LR− values were 5.0 and zero, respectively.

As a further exercise, we used the harmonized clini-
cal criteria for metabolic syndrome [4] as the reference 
standard for ROC analysis, instead of the McAuley Index. 
For plasma water T2, this analysis yielded sensitivity and 
specificity values of 73% at a cutoff value of 745 ms and 
an AUC  =  0.75. For serum water T2, the values were 
similar: 71% sensitivity and 69% specificity at a cutoff of 
804.8 ms and an AUC = 0.71.

Identification of early metabolic abnormalities using water 
T2

Using the plasma and serum water T2 cutoff values of 
745.0 and 811.8  ms, along with the current criteria for 
prediabetes [40] and metabolic syndrome [4], the sub-
jects in this study were classified into metabolic stages, 
as shown in Fig.  3. Of the total of 72 subjects, 31 had 

normal metabolism, while the other 41 had early meta-
bolic abnormalities, prediabetes and/or metabolic syn-
drome defined by clinical criteria. Of the 41, 25 had 
prediabetes, and 10 of those 25 met the clinical criteria 
for metabolic syndrome. The remaining 16 did not have 
prediabetes, but had plasma or serum water T2 values 
below the cutoffs. Of those 16, only three met the clinical 
criteria for metabolic syndrome. Therefore, plasma and 
serum water T2 uniquely identified 13 subjects (18% of 
the study population) with metabolic abnormalities that 
would have gone undetected by the current clinical defi-
nitions of prediabetes and metabolic syndrome.

Further examination of the 13 normoglycemic subjects 
with low plasma or serum water T2 values yielded the fol-
lowing observations:

A.	Three of the 13 subjects had overt compensatory 
hyperinsulinemia, with fasting insulin above 12.2 
μIU/mL [26] and insulin C-peptide in the top tertile. 
All three subjects had subclinical inflammation as 
well.

B.	 Another 3 of the 13 subjects showed evidence of 
hyperinsulinemia, but missed the fasting insulin cut-
off of 12.2 μIU/mL; two of the three also missed the 
McAuley Index cutoff < 6.07 [26]. However, they had 
insulin and insulin c-peptide levels in the top tertiles 
of the subjects in this study. Two of these three sub-
jects showed evidence of inflammation.

C.	Two subjects had low or moderate insulin levels, but 
insulin c-peptide in the top quartile. The mismatch 
between insulin vs. insulin c-peptide likely results 
from rapid hepatic insulin clearance rates. Insulin 
is cleared by the liver, whereas insulin c-peptide is 
cleared more slowly by the kidney [48]. Subjects with 

Fig. 2  Receiver operator characteristic (ROC) curves to quantify the 
ability of different diagnostic tests to detect early insulin resistance 
(metabolic syndrome), as defined by the McAuley Index. Blue (left 
curve): plasma water T2; Red (middle curve): hemoglobin A1c; Yellow 
(right curve): glucose. An ideal ROC curve follows the left and top 
axes and intersects with the (0,1 coordinate)

Fig. 3  The distribution of the 72 subjects in this study with respect 
to metabolic abnormalities. Thirty-one subjects had no identifi-
able metabolic abnormalities (“Normal Metabolism”), while 41 had 
early abnormalities, prediabetes and/or clinically-defined metabolic 
syndrome (MetS). Twenty-five of the 41 met the ADA criteria for pre-
diabetes, and 10 of those 25 also met the harmonized clinical criteria 
for MetS [4]. The remaining 16 subjects with “Early Abnormalities” 
were identified by low water T2 values in the absence of prediabetes. 
Only three of those 16 met the clinical criteria for MetS. Thus, water T2 
uniquely identified 13 individuals with abnormalities consistent with 
early metabolic syndrome
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rapid insulin hepatic clearance may have a limited 
capacity to sustain insulin levels high enough to com-
pensate for tissue insulin resistance. These subjects 
may be prone to develop impaired glucose tolerance. 
In addition to elevated insulin c-peptide, both sub-
jects showed evidence of inflammation.

D.	Three subjects showed no evidence of hyperinsu-
linemia, as monitored by insulin, c-peptide or the 
McAuley Index, but exhibited high levels of proinsu-
lin, with ratios of proinsulin/insulin c-peptide in the 
top tertile. This pattern points to a defect in the enzy-
matic conversion of proinsulin to insulin and insulin 
c-peptide, which has been observed in non-diabetic 
and diabetic subjects [49–53]. High proinsulin levels 
are predictive of incident type 2 diabetes and insulin 
resistance in diabetes [49, 51, 52]. In addition, these 
subjects showed signs of dyslipidemia and inflamma-
tion.

E.	 The remaining two subjects had no apparent eleva-
tions in insulin, insulin c-peptide or proinsulin. One 
subject had elevated total cholesterol, LDL-choles-
terol and LDL particle number, but not triglycerides 
or triglyceride-related markers. In addition, this sub-
ject had levels of white blood cells and neutrophils 
in the top tertile, but C-reactive protein and serum 
globulins were unremarkable. This subject appeared 
to have a type of dyslipidemia and subclinical inflam-
mation unrelated to insulin resistance. The remain-
ing subject had only three abnormalities besides a 
low serum T2: elevated lipoprotein (a), an increased 
anion gap and serum globulins in the top quartile.

Thus, the 13 normoglycemic subjects with low water T2 
had a heterogeneous set of early metabolic abnormalities 
(hyperinsulinemia, dyslipidemia and/or inflammation) 
that were undetected by the clinical criteria for MetS. 
This observation illustrates the limitations of the clinical 
definition of MetS, and the unique power of water T2 to 
detect this condition.

Identifying the principal drivers of low water T2 
in metabolic syndrome
To assess the role of the 16 most abundant plasma pro-
teins and lipoproteins in metabolic syndrome, the plasma 
and serum water T2 cutoffs of ≤  745.0 and ≤  811.8  ms 
were used to classify the study subjects into those with 
and without the syndrome. The percent differences in the 
mean plasma protein concentrations for the two groups 
of subjects are displayed in Fig.  4. Subjects with meta-
bolic syndrome, here defined by low water T2, displayed 
statistically significant increases in the mean concentra-
tions of fibrinogen, complement C3c, haptoglobin, apoli-
poprotein B, α1-acid glycoprotein and complement C4c, 

as well as total plasma proteins and globulins (Fig.  4, 
black bars). By contrast, there were no significant changes 
in the concentrations of the other 10 proteins: albumin, 
IgG, transferrin, IgA, α2-macroglobulin, apolipoprotein 
AI (HDL), α1-antitrypsin, IgM, apolipoprotein E and 
ceruloplasmin (Fig. 4, grey bars). Thus, low T2 values and 
metabolic syndrome are characterized by increases in the 
concentrations of a specific subset of acute phase proteins 
and lipoproteins.

Discussion
This report describes the serendipitous discovery of a 
new biomarker for early metabolic syndrome and its 
initial characterization in human subjects. The results 
revealed the strong correlations between plasma and 
serum water T2 values and markers of five conditions 
related to metabolic syndrome: hyperinsulinemia, dys-
lipidemia, pro-inflammation and pro-coagulation states, 
and electrolyte imbalances. The correlations were 
observed in a cohort of otherwise healthy, non-diabetic, 
mostly non-obese adults. Based on multiple and logistic 
regression analyses, these conditions had independent 
and/or additive contributions to the lowering of water 
T2. Water T2 values were driven lower by increases in 
the concentrations of 6 of the 16 most abundant pro-
teins and lipoproteins in human plasma. Five of the six 
were positive acute phase proteins—markers of innate 

Fig. 4  The percent change in mean plasma protein concentration 
between the low vs. high water T2 groups, using the ROC-established 
cutoffs defined in the text. The 16 most abundant proteins in plasma 
are listed from left to right in order of decreasing concentration, with 
total protein and total globulin concentrations listed at the far right. 
Together, these 16 proteins accounted for > 99% of the total plasma 
protein mass. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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immunity—and the other was apolipoprotein B, a major 
protein component of cholesterol- and triglyceride-rich 
lipoprotein particles.

The five most abundant acute phase proteins associated 
with lower plasma water T2—fibrinogen, complement 
C3, haptoglobin, α1-acid glycoprotein and complement 
C4—have been the focus of several prospective epidemi-
ological studies. The Framingham Study helped to estab-
lish fibrinogen as a risk factor for cardiovascular disease 
[28], and the Insulin Resistance Atherosclerosis Study 
demonstrated the relationship between fibrinogen and 
insulin resistance syndrome (metabolic syndrome) [29]. 
In addition to its effects on thrombogenesis and plate-
let aggregation, fibrinogen affects the rheology of blood 
flow by making the blood more viscous [30], which may 
explain part of the mechanism by which it lowers plasma 
blood T2 values. In a study of hospital patients, most of 
whom had severe lung disease (carcinoma, metastases, 
infectious or inflammatory diseases), an inverse corre-
lation was observed between fibrinogen and plasma T2 
[54]. The interpretation was that fibrinogen was monitor-
ing the inflammatory status of the patient, rather than the 
presence or absence of cancer [54]. Those observations 
are consistent with the current study, even though the 
current subjects do not have any serious acute or chronic 
illnesses. The current study highlights the exquisite sensi-
tivity of water T2 to detect subtle, subclinical inflamma-
tion, even in subjects who are otherwise healthy.

In a prospective study [55], fibrinogen, complement C3, 
C4 and haptoglobin were associated with insulin resist-
ance and incident type 2 diabetes, but not α1-antitrypsin, 
ceruloplasmin or orosomucoid. This pattern of selective 
increases in some acute phase proteins, but not others, is 
generally consistent with the pattern of changes detected 
here by plasma water T2. The current observations high-
light the unique capability of water T2 to detect changes 
in a cassette of co-regulated acute phase proteins using 
just one measurement.

Moreover, plasma and serum water T2 were inversely 
correlated with the concentrations of apolipoprotein B 
and apo B-containing lipoproteins. These abundant nan-
oparticles constitute the largest molecular assemblies in 
plasma and serum, ranging from  ~  20  nm diameter for 
cholesterol-rich LDL, to ~ 60 to 100 nm for triglyceride-
rich VLDL. Increased concentrations of apo B-containing 
lipoprotein particles should cause a profound decrease in 
water mobility and lowering of water T2, as water binds 
to a larger number of particles. Through the elevation of 
plasma triglycerides, insulin resistance causes a remod-
eling of LDL particles, resulting in a larger number of 
smaller, denser particles [56, 57]. At a given cholesterol 
level, this increase in particle number provides additional 

surface area for water molecules to bind and thus, could 
lower water T2 values. In addition, the accumulation of 
remnant lipoprotein particles in the blood that occurs 
with insulin resistance could have a similar effect on low-
ering T2.

A curious observation was the lack of correlation 
between water T2 and HDL-cholesterol or apolipopro-
tein A-I, even though HDL-C was inversely correlated 
with triglyceride levels. A possible explanation is that 
low HDL-C is not a prominent feature of early metabolic 
syndrome, as typified by the subjects in this study, but 
becomes more prominent in later stages of MetS when 
triglyceride levels tend to be higher, such as overt type 2 
diabetes. This distinction is important, as low HDL-C is 
one of the five clinical criteria for metabolic syndrome.

As expected, water T2 values were inversely corre-
lated with measures of the bulk properties of plasma 
and serum, i.e., viscosity and total protein concentration. 
However, after correcting for bulk factors using multi-
ple regression, water T2 remained independently associ-
ated with markers of hyperinsulinemia, dyslipidemia and 
inflammation. Thus, water T2 is driven by non-specific 
changes in bulk factors as well as specific changes in indi-
vidual proteins tied to different aspects of metabolism. A 
model for how metabolic syndrome reduces water T2 is 
presented in Fig. 5.

Plasma and serum water T2 showed a remarkably high 
sensitivity and specificity for detecting early insulin 
resistance in subjects with normal fasting glucose and 
HbA1c levels. The sensitivity was 100%, with no false 
negatives. The specificity was 86% for plasma and 80% for 
serum, as water T2 detected two individuals with cardio-
metabolic abnormalities apparently unrelated to early 
insulin resistance.

The profile of sensitivity and specificity for water T2 
makes for a good screening test, which is not the same 
as a diagnostic test [58]. Screening is beneficial when 
(i) the disease is serious, (ii) treatment before symp-
toms is more effective than treatment delayed until after 
symptoms, and (iii) the prevalence of the detectable 
pre-clinical phase is high [59]. Type 2 diabetes and ath-
erosclerotic cardiovascular disease meet those criteria. 
A good screening test is inexpensive, easy to adminis-
ter, reliable, reproducible, has minimal discomfort and 
is valid, i.e., sensitive and specific. Water T2 meets those 
criteria. Unlike disease risk surveys, where risk scores are 
based on broad population averages, water T2 provides 
a personalized assessment of metabolic health status. 
Pending further testing and validation, water T2 appears 
to be a promising screening test for identifying those 
at risk for prediabetes, type 2 diabetes, atherosclerotic 
cardiovascular disease, and possibly even Alzheimer’s 
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disease. Approximately one-third of Alzheimer’s cases 
are preventable, and insulin resistance and diabetes are 
among the modifiable risk factors [60–64].

The measurement of water T2 in human blood is sur-
prisingly simple and practical [31]. The test uses a small 
volume (~  50  μL) of unmodified plasma or serum, and 
requires no reagents, chemical reactions or sample 
manipulations. The data collection takes  ~  3  min, and 
the analysis is quick and straightforward. Currently, the 
measurement is made in a benchtop NMR relaxometry 
device about the size of a toaster oven, but even smaller 
devices for this purpose could be designed [31, 65]. 
Although this study used a research-grade instrument, 
a clinical instrument designed for the diagnosis of sep-
sis and blood coagulation in critical care units is com-
mercially available from T2 Biosystems, Inc. (Lexington, 
Massachusetts, USA). It can perform the measurements 
described here. It is feasible to perform this test in point-
of-care settings like primary care clinics.

Limitations of the study
This biomarker discovery study provides an initial assess-
ment of the metabolic information content of plasma and 
serum water T2 in non-diabetic human subjects. It needs 
to be followed up by a series of validation steps: in longi-
tudinal cohorts, in the postprandial state, against direct 
measures of insulin sensitivity, in larger populations and 
in response to therapeutic interventions, as explained 
below.

This cross-sectional study does not provide direct 
evidence for the ability of plasma or serum water T2 to 
predict future risk for type 2 diabetes or cardiovascular 
disease. However, the individual acute phase proteins and 
lipoproteins monitored by water T2 have been shown, in 
prior prospective studies, to be associated with incident 
type 2 diabetes and cardiovascular events. Future work 
should assess water T2 in longitudinal cohorts.

All blood testing was performed on subjects who 
underwent a 12-h overnight fast. The current results pro-
vide little or no direct insight into postprandial metabo-
lism or glucose tolerance following an oral glucose load. 
Thus, T2 will need to be correlated with results from oral 
glucose tolerance tests.

This study employed indirect measures of insulin 
resistance based on fasting insulin, insulin c-peptide, 
proinsulin, triglycerides and indices derived from them, 
most notably the McAuley Index. An important next step 
is to validate plasma and serum water T2 values against 
direct measures of tissue insulin resistance.

The correlation of water T2 with BMI and waist cir-
cumference in the context of obesity was inconclusive, 
as this study enrolled mainly non-obese subjects. Fur-
ther work needs to be done to evaluate the association of 
water T2 with BMI and central obesity. Likewise, the rela-
tionship of water T2 with blood pressure warrants further 
evaluation.

While the 72 subjects employed in this biomarker 
discovery study provided sufficient statistical power to 

Fig. 5  A model for the linkage between genetic and environmental factors, metabolic abnormalities, blood biomarkers, and plasma and serum 
water T2 values



Page 17 of 19Robinson et al. J Transl Med  (2017) 15:258 

identify biologically important correlation coefficients 
greater than ~ 0.25, a future study with a larger number 
of subjects will permit a more comprehensive statistical 
analysis. The main benefit of a larger study would be the 
generation of multiple and logistical regression mod-
els that can accommodate a larger number of predictor 
variables. Remarkably, we were able to account for three-
fourths of the variation in water T2 with up to five pre-
dictor variables The high sensitivity and large variance 
in water T2 made that possible. However, a study with 
a larger number of subjects may be able to account for 
other independent predictors of water T2.

Conclusions
Water T2 from benchtop NMR relaxometry offers a new 
tool for detecting individuals with metabolic syndrome. 
Its advantages can be summarized in three words: early, 
global and practical. It detects the earliest abnormali-
ties, capturing a global view of an individual’s metabolic 
health, with one simple measurement. Water T2 should 
be a central component of personalized strategies to 
assess metabolic health and prevent type 2 diabetes and 
atherosclerotic cardiovascular disease.
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