11 research outputs found

    Sertoli-germ cell anchoring junction dynamics in the testis are regulated by an interplay of lipid and protein kinases

    No full text
    When Sertoli and germ cells were co-cultured in vitro in serum-free chemically defined medium, functional anchoring junctions such as cell-cell intermediate filament-based desmosome-like junctions and cell-cell actin-based adherens junctions (e.g. ectoplasmic specialization (ES)) were formed within 1-2 days. This event was marked by the induction of several protein kinases such as phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (PKB; also known as Akt), p21-activated kinase-2 (PAK-2), and their downstream effector (ERK) as well as an increase in PKB intrinsic activity. PI3K, phospho (p)-PKB, and PAK were co-localized to the site of apical ES in the seminiferous epithelium of the rat testis in immunohistochemistry studies. Furthermore, PI3K also co-localized with p-PKB to the same site in the epithelium as determined by fluorescence microscopy, consistent with their localization at the ES. These kinases were shown to associate with ES-associated proteins such as β1-integrin, phosphorylated focal adhesion kinase, and c-Src by co-immunoprecipitation, suggesting that the integrin-laminin protein complex at the apical ES likely utilizes these protein kinases as regulatory proteins to modulate Sertoli-germ cell adherens junction dynamics via the ERK signaling pathway. To validate this hypothesis further, an in vivo model using AF-2364 (1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide) to perturb Sertoli-germ cell anchoring junction function, inducing germ cell loss from the epithelium in adult rats, was used in conjunction with specific inhibitors. Interestingly, the event of germ cell loss induced by AF-2364 in vivo was also associated with induction of PI3K, p-PKB, PAK-2, and p-ERK as well as a surge in intrinsic PKB activity. Perhaps the most important of all, pretreatment of rats with wortmannin (a PI3K inhibitor) or anti-β1-integrin antibody via intratesticular injection indeed delayed AF-2364-induced spermatid loss from the epithelium. In summary, these results illustrate that Sertoli-germ cell anchoring junction dynamics in the testis are regulated, at least in part, via the β1-integrin/PI3K/PKB/ERK signaling pathway

    Blood-testis barrier dynamics are regulated by α\u3csub\u3e2\u3c/sub\u3e- macroglobulin via the c-Jun N-terminal protein kinase pathway

    No full text
    The blood-testis barrier (BTB), in contrast to the blood-brain and blood-retina barriers, is composed of coexisting tight junctions, gap junctions, and basal ectoplasmic specializations, a testis-specific type of adherens junction. Recent studies showed that BTB restructuring that facilitates germ cell migration during spermatogenesis involves proteolysis, an event that is usually restricted to the cell-matrix interface in other epithelia. For instance, a surge in α2-macroglobulin (α2-MG), a protease inhibitor produced by Sertoli cells, was detected at the Sertoli-Sertoli and Sertoli-germ cell interface in the epithelium during cadmium chloride-induced BTB disruption in adult rats. It is thus proposed that the increase in α2-MG is crucial for protecting the epithelium from unwanted proteolysis as well as regulating the availability of cytokines that affect junction turnover. Although both tight junction and adherens junction dynamics at the BTB are regulated via the p38 MAPK signaling pathway, the mechanism(s) that regulates α2-MG is entirely unknown. In this study, we have shown that by administering dimethylaminopurine, a c-Jun N-terminal protein kinase (JNK) inhibitor, to the testis, JNK activity was blocked specifically and α2-MG production was inhibited, worsening the cadmium chloride-induced damage to the epithelium. Studies coupled with inhibitors, immunoblottings, and immunofluorescent and electron microscopy have unequivocally demonstrated that the JNK signaling pathway is a putative regulatory pathway for α2-MG production in the testis. This finding illustrates for the first time that a cell-matrix restructuring event occurs in normal cell physiology at the cell-cell interface in the testis, highlighting the significance of α2-MG in the regulation of BTB function

    Dysregulated stemness-related genes in gynecological malignancies

    No full text
    In recent years, much attention has been paid to the concept of cancer stem cells (CSC) and self-renewal related pathways in cancer biology. This review outlines the dysregulated stemness-related genes or transcription factors in gynecological cancers. Hedgehog (Hh) and Notch signaling are important pathways in tissue pattern programming and cell fate determination during embryonic development. Hyperactivation of these two pathways was frequently observed in gynecological malignancies such as ovarian, endometrial and cervical cancers. In contrast, the expression profiles of pluripotency-regulating core transcriptional circuitry: Nanog, Oct4 and Sox2 appear heterogeneous. Among these transcription factors, overexpression of Nanog was found to exert a prominent effect in gynecological tumorigenesis, while dysregulations of Oct4 and Sox2 may vary in a context dependent manner. On the other hand, the isolation of putative CSC illustrates a hierarchy model of tumor heterogeneity, in which only a subset of cells among biologically distinct populations can initiate tumor growth. Re-activation of these pluripotent transcription factors (Nanog, Oct4 and/or Sox2) in association with distinct tumorigenic properties could be found in clones isolated from gynecological tumors using various approaches. Recent understanding on the roles of Hh and Notch signaling in enhancing CSC survival may help to better understand the mechanism of carcinogenesis and identify new pharmaceutical targets for gynecological malignancie

    Role of tissue inhibitor of metalloproteases-1 in junction dynamics in the testis

    No full text
    Using multiple high-performance liquid chromatography steps, we have identified and purified a polypeptide to apparent homogeneity from primary Sertoli cell conditioned culture medium that consisted of 2 molecular variants of 31 and 29 kDa when electrophoresed on a sodium dodecyl sulfate-polyacrylamide gel run under reducing conditions. Partial N-terminal amino acid sequence analysis of these 2 proteins revealed a sequence of NH 2-IKMA-KMLKGFDAVGNATG, which is homologous to tissue inhibitor of metalloproteases-1 (TIMP-1). Studies by semiquantitative reverse transcription-polymerase chain reaction using a primer pair specific to rat TIMP-1 demonstrated that both Sertoli and germ cells express TIMP-1. During maturation, the steady-state TIMP-1 mRNA level in the testis increased significantly from 40 to 60 days of age, which suggests its role in the restructuring of the epithelium during spermiation. This increase in testicular TIMP-1 expression was apparently not due to the increase in germ cell number, because TIMP-1 expression decreased approximately fivefold in germ cells isolated from testes of aging rats. Using Sertoli cells cultured at low (0.05 × 106 cells/cm2) and high (0.5 × 10 6 cells/cm2) densities, it was found that TIMP-1 expression increased transiently but significantly during junction assembly. A similar induction of TIMP-1 mRNA was also detected in Sertoli-germ cell cocultures during germ cell adhesion onto Sertoli cells. More important, the inclusion of either α2-macroglobulin (a protease inhibitor produced by Sertoli cells) or aprotinin (a serine protease inhibitor) into an in vitro germ cell adhesion assay facilitated the attachment of fluorescently labeled germ cells onto the Sertoli cell epithelium when compared to control, which suggests that the assembly of adherens junctions may involve protease inhibitors

    Tumor necrosis factor α reversibly disrupts the blood-testis barrier and impairs Sertoli-germ cell adhesion in the seminiferous epithelium of adult rat testes

    No full text
    The timely restructuring of the blood-testis barrier (BTB) that facilitates the migration of preleptotene and leptotene spermatocytes from the basal to the adluminal compartment in the seminiferous epithelium of adult rat testes, which occurs at late stage VII through early stage VIII of the epithelial cycle, is a crucial cellular event of spermatogenesis. However, the regulation of BTB dynamics at the biochemical level remains elusive. In this study, tumor necrosis factor α (TNFα), a secretory product of Sertoh and germ cells in rat testes, was shown to affect junction dynamics in vivo. Following an acute administration of recombinant TNFα directly to adult rat testes in vivo at 0·5 and 2 μg/testis (with a body weight ∼300 g), this treatment significantly and transiently disrupted the BTB. It also transiently inhibited the steady-state protein levels of occludin, zonula occludens-1, and N-cadherin, but not junction adhesion molecule-A, α-, and β-catenin in testes at the BTB site as illustrated by immunoblottings, immunohistochemistry, electron microscopy, and fluorescent microscopy. This transient disruption of the BTB integrity induced by TNFα treatment was further demonstrated by a functional test to assess the passage of a fluorescent dye (e.g. fluorescein-5-isothiocyanate) from the systemic circulation to the adluminal compartment. Additionally, both the phosphorylated-Ser/Thr protein kinase activated by MAP kinase kinase (p-p38) and phosphorylated-externally regulated kinase (p-ERK) mitogen -activated protein kinase-signaling pathways were transiently activated. Collectively, these data coupled with the recently published in vitro studies have illustrated that the BTB is likely utilizing a novel mechanism in which localized production of TNFα by Sertoli and germ cells into the microenvironment at the basal compartment facilitates the timely restructuring (\u27opening\u27?) of the BTB during spermatogenesis to facilitate germ cell migration

    AF-2364 [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: A review of recent data

    No full text
    Earlier studies have shown that 1-(2,4-dichlorobenzyl)-1H-indazole-3- carbohydrazide (AF-2364) is a potential male contraceptive when administered orally to adult Sprague-Dawley rats. This compound induces reversible germ cell loss from the seminiferous epithelium by disrupting cell adhesion function between Sertoli and germ cells, in particular, elongating/elongate/round spermatids and spermatocytes but not spermatogonia. Thus, this event is accompanied by a transient loss of fertility in treated rats. Once the drug is metabolically cleared, the remaining spermatogonia can begin repopulating the epithelium, and fertility bounces back. In this review, we summarize recent findings regarding the possible use of this drug for male contraception and its mechanism of action in the rat testis. We also provide an update on the efficacy results of using different treatment regimens in adult rats where AF-2364 was administered by gavage vs. intraperitoneal and intramuscular administration. These results have clearly indicated that AF-2364 is indeed a reversible male contraceptive. Furthermore, the tissue distribution in multiple organs and biological fluids using [3H]-AF-2364 is also reviewed. These data have clearly illustrated the low bioavailability of AF-2364 in rats and that this compound is not specifically taken up by any organs including the testis or the epididymis. These summaries are helpful to investigators in the field who seek to understand the molecular mechanism of action of AF-2364 in the rat testis and to explore its possible use for male contraception

    p21-Activated Kinase-1 Promotes Aggressive Phenotype, Cell Proliferation, and Invasion in Gestational Trophoblastic Disease

    No full text
    Gestational trophoblastic disease (GTD) includes hydatidiform mole (HM), which can develop persistent gestational trophoblastic neoplasia requiring chemotherapy; choriocarcinoma, which is a frankly malignant tumor; placental site trophoblastic tumor; and epithelioid trophoblastic tumor. p21-Activated kinases (PAKs) promote malignant tumor progression. Therefore, this study investigated PAK1, PAK2, and p-PAK2 Ser20 in the pathogenesis of GTD. By real-time PCR, PAK1 mRNA was significantly higher in HMs, particularly metastatic HMs (P = 0.046) and HMs that developed persistent disease (P = 0.011), when compared with normal placentas. By immunohistochemistry, significantly increased cytoplasmic PAK1 immunoreactivity in cytotrophoblasts was also detected in HMs (P = 0.042) and choriocarcinomas (P = 0.003). In addition, HMs that developed persistent disease displayed higher PAK1 immunoreactivity than those that regressed (P = 0.016), and elevated PAK1 immunoreactivity was observed in placental site trophoblastic tumors. Indeed, there was significant positive correlation between PAK1 expression and the proliferative indices Ki-67 (P = 0.016) and MCM7 (P = 0.026). Moreover, higher PAK1 mRNA and protein expression was confirmed in the choriocarcinoma cell-lines JEG-3 and JAR; however, PAK2 mRNA and p-PAK2 immunoreactivity showed a similar expression pattern in normal first trimester placentas and GTD. Knockdown of PAK1 in JEG-3 and JAR reduced cell proliferation, migration, and invasion ability, up-regulated p16, and down-regulated vascular endothelial growth factor and MT1-MMP expression. This is the first report revealing the involvement of PAK1 in the pathogenesis and clinical progress of GTD

    Overexpression of NANOG in Gestational Trophoblastic Diseases : Effect on Apoptosis, Cell Invasion, and Clinical Outcome

    No full text
    Gestational trophoblastic disease includes choriocarcinoma, a frankly malignant tumor, and hydatidiform mole (HM), which often leads to the development of persistent gestational trophoblastic neoplasia and requires chemotherapy. NANOG is an important transcription factor that is crucial for maintaining embryonic stem cell self-renewal and pluripotency. We postulated that NANOG is involved in the pathogenesis of gestational trophoblastic disease. In this study, significantly higher NANOG mRNA and protein expression levels, by quantitative PCR and immunoblotting, respectively, were demonstrated in HMs, particularly those that developed persistent disease, when compared with normal placentas. In addition, significantly increased nuclear NANOG immunoreactivity was found by immunohistochemistry in HMs (P < 0.001) and choriocarcinoma (P = 0.002). Higher NANOG expression levels were demonstrated in HMs that developed persistent disease, as compared with those that regressed (P = 0.025). Nuclear localization of NANOG was confirmed by confocal microscopy and immunoblotting in choriocarcinoma cell lines. There was a significant inverse correlation between NANOG immunoreactivity and apoptotic index assessed by M30 CytoDeath antibody (P = 0.012). After stable knockdown of NANOG in the choriocarcinoma cell line JEG-3 by an shRNA approach, increased apoptosis was observed in relation to with enhanced caspases and poly(ADP-ribose) polymerase activities. NANOG knockdown was also associated with decreased mobility and invasion of JEG-3 and down-regulation of matrix metalloproteases 2 and 9. These findings suggest that NANOG is involved in the pathogenesis and clinical progress of gestational trophoblastic disease, likely through its effect on apoptosis, cell migration, and invasion
    corecore