23 research outputs found

    A continuous model of physiological prion aggregation suggests a role for Orb2 in gating long-term synaptic information.

    Get PDF
    The regulation of mRNA translation at the level of the synapse is believed to be fundamental in memory and learning at the cellular level. The family of cytoplasmic polyadenylation element binding (CPEB) proteins emerged as an important RNA-binding protein family during development and in adult neurons. Drosophila Orb2 (homologue of mouse CPEB3 protein and of the neural isoform of Aplysia CPEB) has been found to be involved in the translation of plasticity-dependent mRNAs and has been associated with long-term memory. Orb2 protein presents two main isoforms, Orb2A and Orb2B, which form an activity-induced amyloid-like functional aggregate, thought to be the translation-inducing state of the RNA-binding protein. Here we present a first two-states continuous differential model for Orb2A-Orb2B aggregation. This model provides new working hypotheses for studying the role of prion-like CPEB proteins in long-term synaptic plasticity. Moreover, this model can be used as a first step to integrate translation- and protein aggregation-dependent phenomena in synaptic facilitation rules

    Modelling of the functional amyloid aggregation at the synapse. New insights into the local computational properties of neurons.

    Get PDF
    The regulation of mRNA translation at synaptic level is believed to be fundamental in memory and learning at cellular level. A family of RNA binding proteins (RBPs) which emerged to be important during development and in adult neurons is the one of Cytoplasmic Polyadenylation Element Binding proteins (CPEBs). Drosophila Orb2 (homolog of vertebrate CPEB2 protein and of the neural isoform of Aplysia CPEB) has been found to be involved in the translation of plasticity-dependent mRNAs and has been associated to Long Term Memory (LTM). Orb2 protein presents two main isoforms, Orb2A and Orb2B, which form an activity induced amyloid-like functional aggregate, which is thought to be the translation-inducing state of the RBP. I present a two-states continuous differential model for Orb2A-Orb2B aggregation and I propose it, more generally, as a new synaptic facilitation rule for learning processes involving protein aggregation-dependent plasticity (PADP)

    Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation.

    Get PDF
    A progressive loss of protein homeostasis is characteristic of aging and a driver of neurodegeneration. To investigate this process quantitatively, we characterized proteome dynamics during brain aging in the short-lived vertebrate Nothobranchius furzeri combining transcriptomics and proteomics. We detected a progressive reduction in the correlation between protein and mRNA, mainly due to post-transcriptional mechanisms that account for over 40% of the age-regulated proteins. These changes cause a progressive loss of stoichiometry in several protein complexes, including ribosomes, which show impaired assembly/disassembly and are enriched in protein aggregates in old brains. Mechanistically, we show that reduction of proteasome activity is an early event during brain aging and is sufficient to induce proteomic signatures of aging and loss of stoichiometry in vivo. Using longitudinal transcriptomic data, we show that the magnitude of early life decline in proteasome levels is a major risk factor for mortality. Our work defines causative events in the aging process that can be targeted to prevent loss of protein homeostasis and delay the onset of age-related neurodegeneration

    Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes.

    Get PDF
    Alzheimer's disease is a neurodegenerative disorder associated with the aberrant aggregation of the amyloid-β peptide. Although increasing evidence implicates cholesterol in the pathogenesis of Alzheimer's disease, the detailed mechanistic link between this lipid molecule and the disease process remains to be fully established. To address this problem, we adopt a kinetics-based strategy that reveals a specific catalytic role of cholesterol in the aggregation of Aβ42 (the 42-residue form of the amyloid-β peptide). More specifically, we demonstrate that lipid membranes containing cholesterol promote Aβ42 aggregation by enhancing its primary nucleation rate by up to 20-fold through a heterogeneous nucleation pathway. We further show that this process occurs as a result of cooperativity in the interaction of multiple cholesterol molecules with Aβ42. These results identify a specific microscopic pathway by which cholesterol dramatically enhances the onset of Aβ42 aggregation, thereby helping rationalize the link between Alzheimer's disease and the impairment of cholesterol homeostasis

    Figure 3 data

    No full text
    Source file for Figure 3

    Supplementary File 1

    No full text
    This is a Python 3.5 script of the ODE model described in Sanguanini and Cattaneo 2018. This file contains a model which uses only one stimulation pattern and was used to generate Figure 2

    Figure 4A data

    No full text
    Source file Figure 4 panel
    corecore