113 research outputs found

    Effect of sowing date on water use efficiency of sunflower crop

    Get PDF
    Results of a trial carried out on sunflower in order to evaluate the most appropriate sowing date and irrigation regime for a more efficient water use are reported. Sunflower was sown in 1995-1996 at the usual date (end of April) and in advance (end of March). It was subjected to three irrigation regimes: full restoration of consumptive water use, supplementary irrigation at the bud stage and flowering and unirrigated control. During the growing cycle, the following parameters were measured: water use, the main climatic data that can affect growth and evapotranspiration, yield and its components. Despite the lower vapor pressure deficit of the air during the cropping cycle of the first sowing date caused a reduction in the average daily evapotranspiration, the colder temperature regime of this period, by making longer the growing cycle, caused almost the same total water use respect to the usual sowing dates. However, with early sowing, the crop could benefit from the spring rainfall at the initial stages of its cycle that reduced the seasonal irrigation volume, in the case of full irrigation and made available a greater amount of water in the case of unirrigated treatment or with supplementary irrigation. The greater water availability in the stressed treatments also produced higher grain yield in early sowing, so that an interesting interaction between the sowing date and the irrigation regime in terms of water use efficiency was observed. In fact, a significant higher irrigation yield water use efficiency and an interesting yield response was measured in the treatment with supplementary irrigation of the first sowing date. No effect of sowing date, both in terms of yield that of water use efficiency was measured in the treatment irrigated with the full restoration of evapotranspiration

    Comparing annual and biennial crop cycle on the growth, yield and quality of saffron using three corm dimensions

    Get PDF
    Saffron (Crocus sativus L.) is a geophyte plant belonging to the Iridaceae family and it is appreciated for its red dried stigmas used as cooking spice and flavouring agent. Effects of crop cycle length and mother corm dimension, as well as their interaction, have been evaluated on the flowering (morphological traits of flowers, days to flowering, flowering interval and flower production), quantitative traits (stigma and daughter corm yield), vegetative development (leaf and daughter corm traits) and qualitative characteristics (coloring, bittering and aromatic powers) of spice. A two-year field study (2017–2019) was conducted to compare annual and biennial crop cycle of saffron using three corm dimensional classes (D1: 2.0–2.5 cm, D2: 2.6–3.5 cm and D3: 3.6–4.5 cm) according a split-plot design with 3 replications. The results showed that the corms of D3 class, planted in annual crop cycle, produced flowers with the highest stigma length (42.2 mm), and dry weight of stigmas (7.4 mg), stamens (11.4 mg) and tepals (40.7 mg). The highest number of flowers per m2 (311.8) and stigma yield (20.7 kg ha 1) were found when corms belonging to D2 class were planted in biennial crop cycle, meanwhile the highest daughter corms production (35.9 t ha 1) was obtained when corms belonged to D3 class were planted in annual crop cycle. Number of daughter corms per m2 with a horizontal diameter from 3.1 to 4.5 cm and weight from 10.1 to > 25 g decreased as increasing the crop cycle length. In biennial crop cycle, corms of D1 class produced more daughter corms belonged to 3.1–3.5 cm diameter class and to 15.1–20 g weight class compared to D2 and D3 classes. Regarding to the spice quality, coloring and bittering powers were positively influenced by biennial crop cycle. According to International Standardization Organization (ISO 3632) references, the maximum values of color (306.3 A1 % 1 cm 440 nm) and taste (116.2 A1 % 1 cm 257 nm) were reached in spice obtained from “biennial crop cycle x D2 class” interaction. No significant effect of all experimental factors on aromatic power was found. It was concluded that the evaluation of combination between crop cycle length and corm dimension is ecessary in the saffron management in order to achieve the optimum yield of stigmas and corms, to improve the qualitative traits of spice and to enhance the by-products as corms of D1 class

    Future climate change in the Mediterranean area: implications for water use and weed management

    Get PDF
    Results obtained within research activity from the Climesco Italian Project are summarized. These results suggest that in regards to the impact of climate change in the Mediterranean area, a decrease of water availability and a more frequent occurrence of drought periods are expected. In order to describe the main effects of climate change on water use in some agro-ecosystems in the Mediterranean area we showed that the Penman-Monteith equation can be modified to simulate future changes in reference evapotranspiration by recalibration of the crop resistive parameter. Moreover, the use of adjusted crop coefficients (Kc) can help quantify the climate change impact on water use for irrigated crops grown in Southern Italy and elsewhere in the Mediterannean. For this region temperature rise and the concomitant expected rainfall reduction may lead to an increase yearly potential water deficits. For autumn-spring crops a further increase of water deficit is not expected.In contrast for a significant increase of waterdeficit, and thus of irrigation needs, is expected for spring-summer crops. Another aspect considered in this review is how in the Mediterranean area, drought conditions and warmer temperatures will alter the competitive balance between crops and some weed species. We report experimental data showing how weed aggressiveness and competition is already increasing due to warmer temperatures in the Mediterranean regio

    The Influence of Soil Physical and Chemical Properties on Saffron (Crocus sativus L.) Growth,Yield and Quality

    Get PDF
    Soil physical and chemical properties play a central role in plant growth, influencing the availability of air, nutrients, and water. The aim of this two-year study was to evaluate the effect of soil texture and chemical properties (pH, electrical conductivity, organic carbon, organic matter, total, and active lime) on saffron (Crocus sativus L.) growth, yield, and quality. Corms were planted in pots filled with seven different soil textures obtained mixing an increasing quantity (33% and 66%) of sand to a clay soil (S1) and to a clay loam soil (S2) compared to a full (100%) sandy soil as a control (S7). A randomized complete block design comprising of seven pots with different types of soil (S1, S2, S3, S4, S5, S6, and S7) replicated three times was used. The results showed that the highest flower number (320.3 nm2), stigma yield (2.0 gm2), daughter corm production (7.9 kgm2), and horizontal diameter (3.1 cm) were derived from S3 and S4 soils. These were characterized by a loam and sandy-loam texture, not very calcareous, with a sub-alkaline and neutral pH, low electrical conductivity, a content of organic matter between 5.46 and 8.67 g kg1, and a content of active lime between 21.25 and 26.25 g kg1. According to the International Organization for Standardization (ISO) references, although all spice samples belonged to the first qualitative category, S1, S3, and S2 soils recorded the highest value for coloring power (290.5, 289.1, and 287.6 A1m 440 nm, respectively). The highest values of bittering (109.2 A1m 257 nm) and aromatic (26.6 A1m 330 nm) power were reached by S3 soil. Positive correlations were found both between color with clay and organic matter, and aroma with total calcium carbonate. In conclusion, the assessment of soil conditions is particularly important to obtain the best saffron performance in terms of stigma and daughter corms yield as well as spice qualitative traits

    Energy, Environmental, and Economic Sustainability of Saffron Cultivation: Insights from the First European (Italian) Case Study

    Get PDF
    Saffron (Crocus sativus L.) stands as a valuable agricultural commodity, witnessing an increasing market inclination toward environmentally sustainable and eco-friendly products. The current literature on the environmental impact and profitability of saffron cultivation is limited, underscoring a notable gap in comprehending the sustainability aspects of this crop. This study utilized a comprehensive multi-model approach to assess the sustainability of annual saffron cultivation, representing the first global detailed evaluation, conducted within a European context (Southern Italy). Energy analysis, physical and monetized life cycle assessment (LCA), and life cycle costing (LCC) were used for a cradle-to-farm gate assessment. One hectare of cultivated saffron, one saffron production yield (stigma, corm, and flower), and 1 kg of stigma yield were used as functional units. The total energy input was 65,073 MJ ha−1, being 33% direct, 67% indirect, 72% renewable, and 28% non-renewable. The majority (55%) of energy is derived from corm production. For 1 kg of saffron the energy efficiency, specific energy, and productivity were 2.98, 4.64 MJ kg−1, and 0.22 kg MJ−1, respectively, while these values dropped significantly for 1 kg of stigma. The multi-indicator LCA analysis using the ReCiPe 2016 model revealed significant contributions to various environmental impact categories. Results align with prior research, pinpointing fertilization and mechanical operations as the primary drivers of diverse environmental impacts. A noticeable carbon intensity was estimated, with a relevant contribution from corm production and human labor, aspects overlooked in previous LCA studies. Saffron cultivation maintains economic viability, with production costs at EUR 98,435 per ha−1 and a net return margin of EUR 172,680 per ha−1, bolstered by the high market price and by-product revenue. Monetization of LCA results revealed that external costs were EUR 15,509 per ha−1, being only 14% of the total cost. Investments in improving yield and resource efficiency have the potential to increase the eco-efficiency of saffron cultivation

    Editorial

    Get PDF
    The Italian Society of Agronomy (SIA) has changed the Editor in Chief and the Editorial board of the Italian Journal of Agronomy (IJA). The new Editorial board is being integrated with new expertise and includes three Associate editors: Michael D. Casler from USDA-ARS, USA, Davide Cammarano from Purdue University, USA and Michele Rinaldi from Council for Agricultural Research and Economics, Italy, the former co-editor. The Editorial board is redeveloping the Journal with a more pro-active publishing policy, that is consistent to the changing editorial demand of agronomy scientists worldwide. The international scientific publishing industry is facing a sharp transition, pulled by the increasing demand of rapid publication in the publish-or-perish or highly-cited paradigm and pushed towards full open access publishing by research funders and end-users. Minimizing the time between manuscript submission and paper publication is threatening the quality of the peer-review process, which is constrained by time pressure on highly qualified scientists, who end up being overloaded with reviews and editorial duties. The open access scientific journal industry is struggling between increasing the impact factor/cite score of the journals and maximizing the number of published articles, which is directly proportional to the publisher's business. This is generating an increasing number of open access scientific publications worldwide: +75% between 2008-10 and 2015-17 in the 'Agronomy and crop science' subject category (Source: Scopus) while the non-open access publications in the same domain and time span increased by only +27%. This situation and the evolution of long term open-theme research funding schemes into short-term projectified finalized research funding programs are deeply influencing the topics of research in Agronomy. Long term agronomic facilities and field scale research are becoming rare and are often being replaced by short-term easily-published studies. However, international scientific exchanges are facilitating the development of permanent regional and global networks of researchers (e.g. AgMip, Global Research Alliance) that are developing unprecedented long-term research efforts on global issues around agronomy, involving hundreds of post-docs and young researchers worldwide. In this developing context, the Italian Journal of Agronomy, own by the Italian Society of Agronomy, a non-profit scientific organization, is developing a new editorial policy to contribute to the progress of agronomic science through an open-access, low-cost and authoritative scientific literature space, with particular attention to young scientists. There are number of reasons why an agronomy scientist should publish an article in the Italian Journal of Agronomy, including: i) to get a rapid and careful peer review assessment of the submissions by an authoritative editorial board with specific expertise in Agronomy and receive careful support on how to address major revisions when required; ii) to ensure maximum visibility for published articles through the open access system; iii) to contribute to the agronomic scientific literature through an open access Scopus/WOS scientific Journal owned by a non-profit scientific society at a fair price; iv) to compete for the SIA grants and prizes for best articles or best reviewers of the year. The new editorial policy of IJA includes a more pro-active publishing strategy aiming at widening the arena of international scientists contributing to the journal's scope, including invited papers and special conditions for the publication of special issues on cutting-edge agronomy topics, promotion of the journal during scientific conferences and events, rewarding of the best articles and peer-reviewers contributing to the journal's development. IJA is solely focused on the free diffusion of agroecosystem science, not on any other business: we trust that authors and readers will appreciate that IJA's editorial board members work toward this mission without compensation and that the article fee is necessary only to cover the publisher's net costs. We are very grateful to the past and new Editorial board and all peer reviewers for their invaluable contribution to the development of our Journal. Michele Perniola, President of the Italian Society of Agronomy Pier Paolo Roggero, Editor in ChiefMichael D. Casler, Associate EditorDavide Cammarano, Associate EditorMichele Rinaldi, Associate Edito

    Evaluation of Native Grasses for Sustainable Turfgrass in the Bioclimatic Mediterranean Region

    Get PDF
    This study reports the results of a research project (Mi.T.E.A.Med) funded by the Italian Ministry of Agriculture. The research was organised in two phases: the first one involved the screening of the study area (Southern Italy) to find suitable turfgrass species and the second one focused on ex situ cultivation to test the ecotypes with salinity resistance. During the first step of the research, 11 sites from 6 regions of Southern and Central Italy were identified. In these sites, 24 ecotypes of Cynodon dactylon (L.) Pers. were collected and their habitus, phenology, and some biometric parameters have been determined. During the 2 years of research, both botanic and agronomic characterisation of the collected C. dactylon ecotypes was carried out. Some native accessions showed a behaviour similar to commercial cultivars, while an ecotype from the Abruzzo Region showed better results compared to the commercial cultivars for several quality indices. The results of this project showed that Mediterranean-adapted native grass species (e.g. Cynodon dactylon (L.) Pers.) are worth investigating for turfgrass, making for their performance and low resource requirement (especially water). This species can be used as promising alternatives to conventional non-native turfgrasses

    Future climate change in the Mediterranean area: implications for water use and weed management

    Get PDF
    Results obtained within research activity from the Climesco Italian Project are summarized. These results suggest that in regards to the impact of climate change in the Mediterranean area, a decrease of water availability and a more frequent occurrence of drought periods are expected. In order to describe the main effects of climate change on water use in some agro-ecosystems in the Mediterranean area we showed that the Penman-Monteith equation can be modified to simulate future changes in reference evapotranspiration by recalibration of the crop resistive parameter. Moreover, the use of adjusted crop coefficients (Kc) can help quantify the climate change impact on water use for irrigated crops grown in Southern Italy and elsewhere in the Mediterannean. For this region temperature rise and the concomitant expected rainfall reduction may lead to an increase yearly potential water deficits. For autumn-spring crops a further increase of water deficit is not expected. In contrast for a significant increase of water deficit, and thus of irrigation needs, is expected for spring-summer crops. Another aspect considered in this review is how in the Mediterranean area, drought conditions and warmer temperatures will alter the competitive balance between crops and some weed species. We report experimental data showing how weed aggressiveness and competition is already increasing due to warmer temperatures in the Mediterranean region

    Crocus sativus L. Ecotypes from Mediterranean Countries: Phenological, Morpho-Productive, Qualitative and Genetic Traits

    Get PDF
    The characterization of C. sativus ecotypes is of great interest for preserving them from a possible genetic erosion due to the decrease of European cultivation surface. In this study, we evaluated four ecotypes from Italy (Sardinia and Abruzzo), Spain (Castilla-La Mancha), and Greece (Kozani) in order to detect the existence of variability and promote the biodiversity of this crop. Thirty-one traits related to saffron flowering, flower morphology, production of spice and daughter corms, vegetative development (leaf and corm traits), and spice quality, were evaluated. In addition, a genetic analysis through three PCR-based approaches, SSRs, RAPD, and SRAP was assessed. Results highlighted a phenotypic variation among ecotypes during two consecutive years. All the studied parameters were influenced by the ecotype except for the stamen length, color coordinates of tepals, leaf length, and leaf number per plant. Sardinia had a longer flowering interval, earlier flowering, and higher spice yield and quality than the other corm origins. The maximum values of morphological traits, such as stigma length, dry weight of stigmas, tepals, flowers and leaves, leaf area, and daughter corm weight were observed in the Abruzzo ecotype. Principal component analysis (PCA) showed a clear separation among ecotypes, in which Sardinia and Spain showed more similarities than Abruzzo and Kozani. Significant negative correlation was found between days to flower with stigma yield and quality. However, we could not find molecular markers discriminating among corm origins. In conclusion, this study suggests the importance of C. sativus ecotypes as precious source of biodiversity and bioactive compounds, and of their enhancement as fundamental prerequisite for a sustainable development strategy and as an agricultural diversification opportunity for growers

    evaluation of native grasses for sustainable turfgrass in the bioclimatic mediterranean region

    Get PDF
    This study reports the results of a research project (Mi.T.E.A.Med) funded by the Italian Ministry of Agriculture. The research was organised in two phases: the first one involved the screening of the study area (Southern Italy) to find suitable turfgrass species and the second one focused on ex situ cultivation to test the ecotypes with salinity resistance. During the first step of the research, 11 sites from 6 regions of Southern and Central Italy were identified. In these sites, 24 ecotypes of Cynodon dactylon (L.) Pers. were collected and their habitus, phenology, and some biometric parameters have been determined. During the 2 years of research, both botanic and agronomic characterisation of the collected C. dactylon ecotypes was carried out. Some native accessions showed a behaviour similar to commercial cultivars, while an ecotype from the Abruzzo Region showed better results compared to the commercial cultivars for several quality indices. The results of this project showed that Mediterranean-adapted native grass species (e.g. Cynodon dactylon (L.) Pers.) are worth investigating for turfgrass, making for their performance and low resource requirement (especially water). This species can be used as promising alternatives to conventional non-native turfgrasses
    • 

    corecore