26 research outputs found

    Using mixtures of biological samples as process controls for RNA-sequencing experiments

    Get PDF
    Bland-Altman log-ratio(M) - log average (A) plots comparing gene expression in BLM-1 to BLM-2, which were mixed with a designed ratio of 1:1 brain RNA, 2:1 muscle RNA and 1:2 liver RNA. Points representing gene expression values for genes expressed at 5-fold greater levels in a specific tissue are colored based on the tissue in which they are selectively expressed. Non-tissue selective RNA are omitted for clarity. Library size normalization scales all libraries to a common total number of counts, while upper quartile normalization scales to the 75th percentile of the counts for each library. None of these normalizations accurately reflects the designed ratio of transcripts between samples. (PNG 473 kb

    Reduced seed region-based off-target activity with lentivirus-mediated RNAi

    No full text
    Along with silencing intended target genes, transfected siRNAs regulate numerous unintended transcripts through a mechanism in which the equivalent of a microRNA-like seed region in the siRNA recognizes complementary sequences in transcript 3′ UTRs. Amelioration of this off-target silencing would lead to more accurate interpretation of RNA interference (RNAi) experiments and thus greatly enhance their value. We tested whether lentivirus-mediated delivery of shRNA is prone to the sequence-based off-target activity prevalent in siRNA experiments. We compared target gene silencing and overall impact on global gene expression caused by multiple sequences delivered as both transfected siRNAs and lentivirus vector-expressed shRNAs. At equivalent levels of target gene silencing, signatures induced by shRNAs were significantly smaller than those induced by cognate siRNAs and arose less frequently from seed region activity. Interestingly, the low level of seed region-based off-target activity exhibited by shRNAs resulted in down-regulation of transcripts that were largely distinct from those regulated by siRNAs. On the basis of these observations, we recommend lentivirus-mediated RNAi for pathway profiling experiments that measure whole genome transcriptional readouts as well as for large-scale screens when resources for extensive follow up are limited

    Sit with me for a moment and remember

    No full text
    bench with a plaque reading Sit with me for a moment and remember is placed in a public space or a gallery and a one-to-one performance takes place. It is both a dedication to a loved one and an invitation to a stranger. You are invited to sit on the bench to listen to a recording that reflects on what it means to sit for a moment and remember. Site-specific piece presented in Derby, Leicester, Manchester, Nottingham and Sheffield. Supported by Hatch, Hazard, In Good Company and Wrought Festival

    Additional file 4: Table S1. of Using mixtures of biological samples as process controls for RNA-sequencing experiments

    No full text
    Enrichment fraction (ρ) calculations as a function of spike amount. Spike mass is accounted for in the enrichment calculation. The spike-ins varied by amount (“u” or “d” samples) and content (pools ‘a’ or ‘b’) in both tissue mixtures (1 and. 2). Calculated enrichment fractions vary by +/- 6 % across these 10 BLM mixtures, showing that the calculation is robust to spike-in mass and content. Enrichment calculations for the ERCC pools must account for the 3-plex nature of the mixes. The shown ratios are for the subset of spike-ins which are present at a 1:1 ratio in each sample. (PNG 119 kb

    Germline de novo mutations in GNB1 cause severe neurodevelopmental disability, hypotonia, and seizures

    No full text
    Whole-exome sequencing of 13 individuals with developmental delay commonly accompanied by abnormal muscle tone and seizures identified de novo missense mutations enriched within a sub-region of GNB1, a gene encoding the guanine nucleotide-binding protein subunit beta-1, Gβ. These 13 individuals were identified among a base of 5,855 individuals recruited for various undiagnosed genetic disorders. The probability of observing 13 or more de novo mutations by chance among 5,855 individuals is very low (p = 7.1 × 10), implicating GNB1 as a genome-wide-significant disease-associated gene. The majority of these 13 mutations affect known Gβ binding sites, which suggests that a likely disease mechanism is through the disruption of the protein interface required for Gα-Gβγ interaction (resulting in a constitutively active Gβγ) or through the disruption of residues relevant for interaction between Gβγ and certain downstream effectors (resulting in reduced interaction with the effectors). Strikingly, 8 of the 13 individuals recruited here for a neurodevelopmental disorder have a germline de novo GNB1 mutation that overlaps a set of five recurrent somatic tumor mutations for which recent functional studies demonstrated a gain-of-function effect due to constitutive activation of G protein downstream signaling cascades for some of the affected residues

    Robustness of Next Generation Sequencing on Older Formalin-Fixed Paraffin-Embedded Tissue

    No full text
    <div><p>Next Generation Sequencing (NGS) technologies are used to detect somatic mutations in tumors and study germ line variation. Most NGS studies use DNA isolated from whole blood or fresh frozen tissue. However, formalin-fixed paraffin-embedded (FFPE) tissues are one of the most widely available clinical specimens. Their potential utility as a source of DNA for NGS would greatly enhance population-based cancer studies. While preliminary studies suggest FFPE tissue may be used for NGS, the feasibility of using archived FFPE specimens in population based studies and the effect of storage time on these specimens needs to be determined. We conducted a study to determine whether DNA in archived FFPE high-grade ovarian serous adenocarcinomas from Surveillance, Epidemiology and End Results (SEER) registries Residual Tissue Repositories (RTR) was present in sufficient quantity and quality for NGS assays. Fifty-nine FFPE tissues, stored from 3 to 32 years, were obtained from three SEER RTR sites. DNA was extracted, quantified, quality assessed, and subjected to whole exome sequencing (WES). Following DNA extraction, 58 of 59 specimens (98%) yielded DNA and moved on to the library generation step followed by WES. Specimens stored for longer periods of time had significantly lower coverage of the target region (6% lower per 10 years, 95% CI: 3-10%) and lower average read depth (40x lower per 10 years, 95% CI: 18-60), although sufficient quality and quantity of WES data was obtained for data mining. Overall, 90% (53/59) of specimens provided usable NGS data regardless of storage time. This feasibility study demonstrates FFPE specimens acquired from SEER registries after varying lengths of storage time and under varying storage conditions are a promising source of DNA for NGS.</p></div

    Association between specimen storage time and the Q129/41 ratio.

    No full text
    <p>The solid line indicates the estimated linear relationship between age and Q129/41 ratio. The shaded area denotes pointwise 95% confidence intervals of the conditional mean. Cases successful through the entire WES workflow (DNA extraction through WES sequencing) are denoted as circles (N = 53); unsuccessful cases are denoted as X’s (N = 6).</p
    corecore