83 research outputs found

    Impaction of permanent mandibular second molar: a retrospective study

    Get PDF
    Objective: To determine the prevalence of impacted mandibular second molar (MM2) and the association between MM2 impaction and crowding. The clinical significance of the angle between first and second mandibular molar and of the space between the first mandibular molar (MM1) and the anterior margin of mandibular ramus in MM2 impaction were also evaluated. Material and Methods: In this retrospective study , from the dental records of 2,945 caucasian young orthodontics patients, 40 subjects with MM2 impaction were included in a study group (SG) and compared with a control group (CG) of 200 subjects without MM2 impactions. The crowding, the angle of inclination of MM2, the distance between MM1 and mandibular ramus, the canine and molar relationships, and the lower centre line discrepancy were measured. For the statistical analysis , descriptive statistics and t-Student for independent sample groups were used. Results: The prevalence of impacted MM2 was 1.36%. The independent-Samples t-Test between SG and CG showed: the presence of crowding (P<=0.001), an higher angle values of MM2 inclination (P<=0.001) and a smaller distance between MM1 and the anterior margin of mandibular ramus (P<=0.001) in the SG. Conclusion: The impaction of MM2 is a relatively rare occurrence in orthodontic caucasian populations. The crowding, a higher angle values of MM2 inclination and a reduced distance between MM1 and the anterior margin of mandibular ramus, at the time of one third of MM2 root formation (T1), characterize MM2 impaction

    OCTN: A Small Transporter Subfamily with Great Relevance to Human Pathophysiology, Drug Discovery, and Diagnostics.

    Get PDF
    OCTN is a small subfamily of membrane transport proteins that belongs to the larger SLC22 family. Two of the three members of the subfamily, namely, OCTN2 and OCTN1, are present in humans. OCTN2 plays a crucial role in the absorption of carnitine from diet and in its distribution to tissues, as demonstrated by the occurrence of severe pathologies caused by malfunctioning or altered expression of this transporter. These findings suggest avoiding a strict vegetarian diet during pregnancy and in childhood. Other roles of OCTN2 are related to the traffic of carnitine derivatives in many tissues. The role of OCTN1 is still unclear, despite the identification of some substrates such as ergothioneine, acetylcholine, and choline. Plausibly, the transporter acts on the control of inflammation and oxidative stress, even though knockout mice do not display phenotypes. A clear role of both transporters has been revealed in drug interaction and delivery. The polyspecificity of the OCTNs is at the base of the interactions with drugs. Interestingly, OCTN2 has been recently exploited in the prodrug approach and in diagnostics. A promising application derives from the localization of OCTN2 in exosomes that represent a noninvasive diagnostic tool

    ASCT1 and ASCT2: Brother and Sister?

    Get PDF
    The SLC1 family includes seven members divided into two groups, namely, EAATs and ASCTs, that share similar 3D architecture; the first one includes high-affinity glutamate transporters, and the second one includes SLC1A4 and SLC1A5, known as ASCT1 and ASCT2, respectively, responsible for the traffic of neutral amino acids across the cell plasma membrane. The physiological role of ASCT1 and ASCT2 has been investigated over the years, revealing different properties in terms of substrate specificities, affinities, and regulation by physiological effectors and posttranslational modifications. Furthermore, ASCT1 and ASCT2 are involved in pathological conditions, such as neurodegenerative disorders and cancer. This has driven research in the pharmaceutical field aimed to find drugs able to target the two proteins.This review focuses on structural, functional, and regulatory aspects of ASCT1 and ASCT2, highlighting similarities and differences

    Exploiting Cysteine Residues of SLC Membrane Transporters as Targets for Drugs.

    Get PDF
    The observation that cysteine is the top gainer amino acid during evolution attracted the attention of scientists dealing with protein chemistry. The thiol group of cysteine, indeed, is a potential site for several types of reactions with variable specificity and strength. This feature proved to be promising also in the field of membrane transporters that represent boundary proteins fundamental for cell homeostasis. These proteins are classified, according to the driving force for transport, in primary or secondary active transporters. Another frequently used classification is nowadays based on phylogenesis. Two major groups are identified that take into account both criteria: the ABC and the SLC transporters, the second being much more numerous. The cellular localization of the transporters makes them very attractive for drug design. Moreover, the presence of at least one cysteine residue in all the annotated SLC transporters, so far, highlights the possibility of using the thiol (SH) residue for covalent drug targeting. Even if a delay exists in this research field due to the scarce knowledge of structure/function relationships, the setup of novel experimental tools for studying SLC proteins of plasma and organelle membranes opens an important perspective in pharmacology

    Mutation of aspartate 238 in FAD synthase isoform 6 increases the specific activity by weakening the FAD binding

    Get PDF
    FAD synthase (FADS, or FMN:ATP adenylyl transferase) coded by the FLAD1 gene is the last enzyme in the pathway of FAD synthesis. The mitochondrial isoform 1 and the cytosolic isoform 2 are characterized by the following two domains: the C-terminal PAPS domain (FADSy) performing FAD synthesis and pyrophosphorolysis; the N-terminal molybdopterin-binding domain (FADHy) performing a Co++ /K+-dependent FAD hydrolysis. Mutations in FLAD1 gene are responsible for riboflavin responsive and non-responsive multiple acyl-CoA dehydrogenases and combined respiratory chain deficiency. In patients harboring frameshift mutations, a shorter isoform (hFADS6) containing the sole FADSy domain is produced representing an emergency protein. With the aim to ameliorate its function we planned to obtain an engineered more efficient hFADS6. Thus, the D238A mutant, resembling the D181A FMNAT “supermutant” of C. glabrata, was overproduced and purified. Kinetic analysis of this enzyme highlighted a general increase of Km, while the kcat was two-fold higher than that of WT. The data suggest that the FAD synthesis rate can be increased. Additional modifications could be performed to further improve the synthesis of FAD. These results correlate with previous data produced in our laboratory, and point towards the following proposals (i) FAD release is the rate limiting step of the catalytic cycle and (ii) ATP and FMN binding sites are synergistically connected

    amino acid transporters in drug discovery

    Get PDF
    Administered drugs interact with membrane transporters of epithelia, Blood Brain Barrier and other districts influencing their delivery and efficacy. Drugs can also be used as inhibitors of transporters involved in human pathology. Drug-transporter interactions are responsible of off-target effects contributing to toxicity. High Throughput Screening technologies increased the potential applications in therapy or in predicting side effects. These strategies will be helpful in reducing animal experimentation. The identification of transporters important for drug absorption, delivery and side effect production and the best technologies for studying interactions are the main goals in this field. Amino acid transporters are not yet considered in human therapy in spite of their involvement in several pathologies. The function of the amino acid transporters EAAT1, ASCT2, GLYT2, GLYT1, B0AT1, LAT1 and LAT2 is so far well characterized. Some structural data on these transporters have also been obtained by bioinformatics. Interactions of these proteins with several drugs have been well defined at the molecular level. Large scale and, in some cases, high throughput screening of pharmacological compounds make these transporters of particular interest and potential application in human health

    Large scale production of the active human ASCT2 (SLC1A5) transporter in Pichia pastoris--functional and kinetic asymmetry revealed in proteoliposomes.

    Get PDF
    Abstract The human glutamine/neutral amino acid transporter ASCT2 (hASCT2) was over-expressed in Pichia pastoris and purified by Ni 2 + -chelating and gel filtration chromatography. The purified protein was reconstituted in liposomes by detergent removal with a batch-wise procedure. Time dependent [ 3 H]glutamine/glutamine antiport was measured in proteoliposomes which was active only in the presence of external Na + . Internal Na + slightly stimulated the antiport. Optimal activity was found at pH 7.0. A substantial inhibition of the transport was observed by Cys, Thr, Ser, Ala, Asn and Met (≥ 70%) and by mercurials and methanethiosulfonates (≥ 80%). Heterologous antiport of [ 3 H]glutamine with other neutral amino acids was also studied. The transporter showed asymmetric specificity for amino acids: Ala, Cys, Val, Met were only inwardly transported, while Gln, Ser, Asn, and Thr were transported bi-directionally. From kinetic analysis of [ 3 H]glutamine/glutamine antiport Km values of 0.097 and 1.8 mM were measured on the external and internal sides of proteoliposomes, respectively. The Km for Na + on the external side was 32 mM. The homology structural model of the hASCT2 protein was built using the GltPh of Pyrococcus horikoshii as template. Cys395 was the only Cys residue externally exposed, thus being the potential target of SH reagents inhibition and, hence, potentially involved in the transport mechanism

    Increased demand for FAD synthesis in differentiated and stem pancreatic cancer cells is accomplished by modulating FLAD1 gene expression: the inhibitory effect of Chicago Sky Blue

    Get PDF
    FLAD1, along with its FAD synthase (FADS, EC 2.7.7.2) product, is crucial for flavin homeostasis and, due to its role in the mitochondrial respiratory chain and nuclear epigenetics, is closely related to cellular metabolism. Therefore, it is not surprising that it could be correlated with cancer. To our knowledge, no previous study has investigated FLAD1 prognostic significance in pancreatic ductal adenocarcinoma (PDAC). Thus, in the present work, the FAD synthesis process was evaluated in two PDAC cell lines: (a) PANC‐1‐ and PANC‐1‐derived cancer stem cells (CSCs), presenting the R273H mutation in the oncosuppressor p53, and (b) MiaPaca2 and MiaPaca2‐derived CSCs, presenting the R248W mutation in p53. As a control, HPDE cells expressing wt‐p53 were used. FADS expression/activity increase was found with malignancy and even more with stemness. An increased FAD synthesis rate in cancer cell lines is presumably demanded by the increase in the FAD‐dependent lysine demethylase 1 protein amount as well as by the increased expression levels of the flavoprotein subunit of complex II of the mitochondrial respiratory chain, namely succinate dehydrogenase. With the aim of proposing FADS as a novel target for cancer therapy, the inhibitory effect of Chicago Sky Blue on FADS enzymatic activity was tested on the recombinant 6His‐hFADS2 (IC50 = 1.2 μm) and PANC‐1‐derived CSCs' lysate (IC50 = 2–10 μm). This molecule was found effective in inhibiting the growth of PANC‐1 and even more of its derived CSC line, thus assessing its role as a potential chemotherapeutic drug
    corecore