173 research outputs found

    Pinus cembra L. tree-ring data as a proxy for summer mass-balance variability of the Careser Glacier (Italian Rhaetian Alps)

    Get PDF
    Glacial extent and mass-balance are sensitive climate proxies providing solid information on past climatic conditions. However, series of annual mass balance measurements of more than sixty years are scarce. To our knowledge, this is the first time the latewood density data (MXD) of the Swiss stone pine (Pinus cembra L.) has been used to reconstruct the summer mass balance (Bs) of an Alpine glacier. The MXD-based Bs well correlates with a Bs reconstruction based on the May to September temperature. Winter precipitation has been used as independent proxy to infer the winter mass balance and to obtain an annual mass balance (Bn) estimate dating back to the glaciological year 1811/12. The reconstructed MXD/precipitation-based Bn well correlates with the data both of the Careser and of other Alpine glaciers measured by the glaciological method. A number of critical issues should be considered in both proxies including nonlinear response of glacial mass balance to temperature, bedrock topography, ice thinning and fragmentation, MXD acquisition and standardization methods, and finally the “divergence problem” responsible for the recent reduced dendroglaciological reconstructions using this stable and reliable proxy

    A long-term chronology of Pinus pinea L. from Parco della Versiliana (Pietrasanta, Italy) derived from treefall induced by a windstorm on March 4th-5th, 2015

    Get PDF
    Abstract Pinewoods are distinctive environmental elements in the Mediterranean coastal area and have both natural and historical significance. From the evening of March 4th to the morning of March 5th, 2015, a severe and unusual windstorm occurred in the Tuscany region of central Italy with wind gusts over 120 km/h. The windstorm caused vast damage to the anthropic and natural environment and wounded numerous trees in the renowned pinewoods of Parco della Versiliana in the Tyrrhenian coastal area. The meteorological calamity provided the opportunity to i) date the onset of the artificial plantation of the present Italian stone pine (Pinus pinea L.) forest to the 1820s, ii) build a long-term tree-ring chronology of the Italian stone pines in the area and iii) analyze the climate-growth relationship of the Italian stone pine in the study area. The resulting Versiliana chronology was derived from 60 trees and spanned from 1828 to 2014 (187 years), representing one of the longest living Italian stone pine forests on the Italian Peninsula. Finally, the climate-growth analysis highlighted that at this site the latewood width is positively influenced by summer temperature, a peculiarity worthy of further investigations

    A Pinus cembra L. tree-ring record for late spring to late summer temperature in the Rhaetian Alps, Italy

    Get PDF
    Abstract Ongoing climate change strongly affects high-elevation environments in the European Alps, influencing the cryosphere and the biosphere and causing widespread retreat of glaciers and changes in biomes. Nevertheless, high-elevation areas often lack long meteorological series, and global datasets cannot represent local variations well. Thus, proxy data, such as tree rings, provide information on past climatic variations from these remote sites. Although maximum latewood density (MXD) chronologies provide better temperature information than those based on tree-ring width (TRW), MXD series from the European Alps are lacking. To derive high-quality temperature information for the Rhaetian Alps, Pinus cembra L. trees sampled at approximately 2000 m a.s.l. were used to build one MXD chronology spanning from 1647 to 2015. The MXD data were significantly and highly correlated with seasonal May-September mean temperatures. The MXD chronology showed a generally positive trend since the middle of the 19th century, interrupted by short phases of climatic deterioration in the beginning of the 20th century and in the 1970s, conforming with the temperature trends. Our results underline the potential for using Pinus cembra L. MXD to reconstruct mean temperature variations, especially during the onset and latter part of the growing season, providing additional information on parts of the growing season not inferred from TRW. Future studies on MXD for this species will increase the availability of temporal and spatial data, allowing detailed climate reconstructions

    A New Frontier of Photocatalysis Employing Micro-Sized TiO2: Air/Water Pollution Abatement and Self-Cleaning/ Antibacterial Applications

    Get PDF
    This chapter presents the use of a commercial micro-sized TiO2 powder as an alternative to the traditional nano-powders as semiconductors in photocatalytic processes. Results of the photocatalytic efficiency towards the photodegradation of the traditional pollutant molecules both in gas phase (nitrogen oxides (NOx) and volatile organic compounds (VOCs)) and in water phase (phenol) are presented and compared to the results obtained with two nano-sized reference powders. Micro-sized TiO2 is also industrially coated at the surfaces of porcelain grés tiles (Active Clean Air and Antibacterial Ceramic™). The possibility to have a photocatalytic material, strongly stuck at the surface of a vitrified tile, increases the use of photocatalysis in real conditions: no problem of filtration of the semiconductor from the liquid medium after use and no risks of leakage of nanoparticles in the atmosphere. Tests were performed using reactors equipped with UV-A lamps and with suitable analytical systems, depending on the final purpose. Characterization data from both powders and coated tiles are put in correlation with the photocatalytic results to understand the semiconductor action during the photocatalytic process. Polluting molecules were chosen in order to cover all the common aspects of environmental pollution: NOx and some VOCs represent the model molecules to test the efficiency of the micro-sized TiO2 (degradation from the pristine molecule to CO2 or inorganic salts) in gas phase. As for the water pollution, phenol was chosen as common pollutant in worldwide rivers. Moreover, tests on self-cleaning and antibacterial properties are also reported. The positive results of micro-sized TiO2 both in powder and coated onto the surface of porcelain grés tiles open the way to new photocatalytic products that do not make use of nanoscale powders avoiding problems to human safety caused by the inherent toxicity of the nanoparticles

    Photocatalytic TiO2: From Airless Jet Spray Technology to Digital Inkjet Printing

    Get PDF
    TiO2 powders can be employed as both photocatalytic and structural materials, leading to applications in external coatings or in interior furnishing devices, including cement mortar, tiles, floorings, and glass supports. The technology of photocatalytic building materials is connected with the widespread production of photocatalytic active tiles. All the techniques proposed in the study involve the employment of nanosized TiO2: this represents a new problem to be dealt with, as inhaling nanoparticles exposes workers during industrial production and people in everyday locations to their dangerousness. Only very recently the employment of microsized TiO2 has been proposed, and the authors in this manuscript report the use of micrometric titania materials, but employing a new deposition technique, which is digital inkjet printing. It represents an improvement of the classical spray coating methods, as it requires piezoelectric heads to precisely direct the deposition of the suspension with an electrostatic field. The mixture contains aqueous/organic components containing micrometric TiO2: to form a suspension, which is printed onto the surface of porcelain grès, large slabs using a digital printer. Many advantages are immediately evident, namely rapid and precise deposition, (almost) no waste of raw materials, thereby highlighting the economy, environmental friendliness, and sustainability of the process. All the materials we obtained have been thoroughly characterized by means of several experimental physico-chemical techniques, such as Raman microspectroscopy and scanning electron microscopy coupled with elemental analysis. Two different model VOCs, ethanol and toluene, and NOx have been selected to test the photocatalytic performances of the abovementioned tiles. Moreover, the antibacterial properties of the tiles have been determined, using Escherichia coli as example. Life cycle assessments (LCAs) for the two processes were modeled for 1 m2 of tiles produced in Modena, Italy. The impact assessments revealed that jet spraying exhibited uniformly greater impacts than digital inkjet printing and that the principal impacts were in human toxicity, cancer effects, freshwater ecotoxicity, and climate change. Most of the impacts were associated with the energy required for the production processes. Further considerations revealed that jet spraying is projected to generate twice as much CO2 and 30% more NOx than digital inkjet printing

    Photoactive TiO2-montmorillonite composite for degradation of organic dyes in water

    Get PDF
    TiO2\u2013montmorillonite composite (TiO2\u2013M) was prepared by impregnation with TiCl4 followed by calcination at 350 C. The synthesized material was characterized by FTIR, TG\u2013DTA, BET, XRD and SEM\u2013 EDX. The results show that TiO2 was efficiently formed in Na\u2013montmorillonite (Na\u2013M) framework, and only a crystalline, pure anatase phase was produced. Photoactivity tests were carried out under UV-A irradiation using five selected organic dyes. The results indicate that the activity of TiO2\u2013M is more important for cationic dyes, where the removal rates are in the order: crystal violet (97.1%) > methylene blue (93.20%) > rhodamine B (79.8%) > methyl orange (36.1%) > Congo red (22.6%). The results of the TiO2\u2013 M activity were compared with that of the commercial P25. The comparison demonstrates that the synthesized TiO2\u2013M exhibits a higher adsorptive behavior and can be used as low-cost alternative to the commercial TiO2 for wastewater treatment, showing also an extreme easiness to completely recover the composite catalyst at the end of the test

    Bismuth oxyhalides for NOx degradation under visible light: the role of the chloride precursor

    Get PDF
    ABSTRACT: Photocatalysis is a green technology for tackling water and air contamination. A valid alternative to the most exploited photocatalytic material, TiO2, is bismuth oxyhalides, which feature a wider bandgap energy range and use visible radiation to attain photoexcitation. Moreover, their layered structure favors the separation of photogenerated electron–hole pairs, with an enhancement in photocatalytic activity. Controlled doping of bismuth oxyhalides with metallic bismuth nanoparticles allows for further boosting of the performance of the material. In the present work, we synthesized Y%Bi-doped BiO(Cl0.875Br0.125) (Y = 0.85, 1, 2, 10) photocatalysts, using cetyltrimethylammonium bromide as the bromide source and varying the chloride source to assess the impact that both length and branching of the hydrocarbon chain might have on the framing and layering of the material. A change in the amount of the reducing agent NaBH4 allowed tuning of the percentage of metallic bismuth. After a thorough characterization (XRPD, SEM, TEM, UV-DRS, XPS), the photocatalytic activity of the catalysts was tested in the degradation of NOx under visible light, reaching a remarkable 53% conversion after 3 h of illumination for the material prepared using cetylpyridinium chloride

    Micro-sized TiO2 catalyst in powder form and as coating on porcelain grès tile for the photodegradation of phenol as model pollutant for water phase

    Get PDF
    In presence of TiO2 and irradiation, phenol can be degraded by hydroxyl radicals or directly via photogenerated carriers, as occurs in photocalytic processes. In this work a commercial micro-sized TiO2 sample in powder form and industrially coated on porcelain gr\ue8s tiles were tested in water remediation with phenol as model molecule. Firstly, we investigated the behaviour of the commercial micro-sized TiO2 comparing the results with reference nano-sized catalyst in the phenol photodegradation process, widely studied in the last decades. Following the phenol concentration as well as the main intermediates formation over time by HPLC analysis, and the mineralization by TOC analysis, we presented results about the photocatalytic behaviour in terms of adsorption, by-products formation, and reaction rate at different phenol starting concentrations. In particular, with the photocatalytic tiles, phenol photodegradation percentage is almost the same at 15 ad 25 ppm (78% and 73% respectively), and much lower at 50 ppm (46%) after 6 hours of test

    Novel Insights into Autophagy and Prostate Cancer: A Comprehensive Review

    Get PDF
    Autophagy is a complex process involved in several cell activities, including tissue growth, differentiation, metabolic modulation, and cancer development. In prostate cancer, autophagy has a pivotal role in the regulation of apoptosis and disease progression. Several molecular pathways are involved, including PI3K/AKT/mTOR. However, depending on the cellular context, autophagy may play either a detrimental or a protective role in prostate cancer. For this purpose, current evidence has investigated how autophagy interacts within these complex interactions. In this article, we discuss novel findings about autophagic machinery in order to better understand the therapeutic response and the chemotherapy resistance of prostate cancer. Autophagic-modulation drugs have been employed in clinical trials to regulate autophagy, aiming to improve the response to chemotherapy or to anti-cancer treatments. Furthermore, the genetic signature of autophagy has been found to have a potential means to stratify prostate cancer aggressiveness. Unfortunately, stronger evidence is needed to better understand this field, and the application of these findings in clinical practice still remains poorly feasible
    • …
    corecore