24 research outputs found

    Helium Emissions Observed in Ground-Based Spectra of Solar Prominences

    Get PDF
    The only prominent line of singly ionized helium in the visible spectral range, helium-II 4686 A, is observed together with the helium-I 5015 A singlet and the helium-I 4471 A triplet line in solar prominences. The sodium emission, NaD2, is used as a tracer for helium-II emissions which are sufficiently bright to exceed the noise level near 10^-6 of the disk-center intensity. The so selected prominences are characterized by small non-thermal line broadening and almost absent velocity shifts, yielding narrow line profiles without wiggles. The reduced widths [Delta(lambda_D) / lambda] of helium-II 4686 A are 1.5 times broader than those of helium-I 4471 A triplet and 1.65 times broader than those of helium-I 5015 A singlet. This indicates that the helium lines originate in a prominence--corona transition region with outwards increasing temperature.Comment: 12 pages, 5 figure, 3 table

    Comparison of theoretical and observed Ca~{\sc ii}~8542 Stokes profiles in quiet regions at the centre of the solar disc

    Full text link
    Interpreting the Stokes profiles observed in quiet regions of the solar chromosphere is a challenging task. The Stokes Q and U profiles are dominated by the scattering polarisation and the Hanle effect, and these processes can only be correctly quantified if 3D radiative transfer effects are taken into account. Forward-modelling of the intensity and polarisation of spectral lines using a 3D model atmosphere is a suitable approach in order to statistically compare the theoretical and observed line profiles. Our aim is to present novel observations of the Ca 8542 line profiles in a quiet region at the centre of the solar disc and to quantitatively compare them with the theoretical Stokes profiles. We aim at estimating the reliability of the 3D model atmosphere using not only the line intensity but the full vector of Stokes parameters. We used data obtained with the ZIMPOL instrument at the IRSOL and compared the observations with the theoretical profiles computed with the PORTA radiative transfer code, using as solar model atmosphere a 3D snapshot taken from a radiation-magnetohydrodynamics simulation. The synthetic profiles were degraded to match the instrument and observing conditions. The degraded theoretical profiles of the Ca 8542 line are qualitatively similar to the observed ones. We confirm that there is a fundamental difference in the widths of all Stokes profiles: the observed lines are wider than the theoretical lines. We find that the amplitudes of the observed profiles are larger than those of the theoretical ones, which suggests that the symmetry breaking effects in the solar chromosphere are stronger than in the model atmosphere. This means that the isosurfaces of temperature, velocity, and magnetic field strength and orientation are more corrugated in the solar chromosphere than in the currently available 3D radiation-magnetohydrodynamics simulation

    Star-planet interactions: I. Stellar rotation and planetary orbits

    Full text link
    Context. As a star evolves, the planet orbits change with time due to tidal interactions, stellar mass losses, friction and gravitational drag forces, mass accretion and evaporation on/by the planet. Stellar rotation modifies the structure of the star and therefore the way these different processes occur. Changes of the orbits, at their turn, have an impact on the rotation of the star. Aims. Models accounting in a consistent way for these interactions between the orbital evolution of the planet and the evolution of the rotation of the star are still missing. The present work is a first attempt to fill this gap. Methods. We compute the evolution of stellar models including a comprehensive treatment of rotational effects together with the evolution of planetary orbits, so that the exchanges of angular momentum between the star and the planetary orbit are treated in a self-consistent way. The evolution of the rotation of the star accounts for the angular momentum exchange with the planet and also follows the effects of the internal transport of angular momentum and chemicals. Results. We show that rotating stellar models without tidal interactions can well reproduce the surface rotations of the bulk of the red giants. However, models without any interactions cannot account for fast rotating red giants in the upper part of the red giant branch, where, such models, whatever the initial rotation considered on the ZAMS, always predict very low velocities. For those stars some interaction with a companion is highly probable and the present rotating stellar models with planets confirm that tidal interaction can reproduce their high surface velocities. We show also that the minimum distance between the planet and the star on the ZAMS that will allow the planet to avoid engulfment and survive is decreased around faster rotating stars. [abridged]Comment: 14 pages, abstract abridged for arXiv submission, accepted for publication in Astronomy & Astrophysic

    Spatial variations of the SrI 4607\AA scattering polarization signals at subgranular scale observed with ZIMPOL at GREGOR telescope

    Get PDF
    Sr I 4607\AA spectral line shows one of the strongest scattering polarization signals in the visible solar spectrum. The amplitudes of these signals are expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect) as well as due to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular region. But, the observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required at the same time. To the aim of measuring these spatial variations at granular scale, we carried out a spectro-polarimetric measurement with the Zurich IMaging POLarimeter (ZIMPOL), at the GREGOR solar telescope at different limb distances on solar disk. Our results show a spatial variation of scattering linear polarization signals in Sr I 4607\AA line at the granular scale at every μ\mu, starting from 0.2 to 0.8. The correlation between the polarization signal amplitude and the continuum intensity imply statistically that the scattering polarization is higher at the granular regions than in the intergranular lanes.Comment: 4 pages, 3 figures, Proceeding of Third Meeting of the Italian Solar and Heliospheric Community, OCTOBER 28-31, 2018 - TURI
    corecore