
Solar Phys (2012) 281:697–706
DOI 10.1007/s11207-012-0118-2

Helium Emissions Observed in Ground-Based Spectra
of Solar Prominences

R. Ramelli · G. Stellmacher · E. Wiehr · M. Bianda

Received: 11 May 2012 / Accepted: 23 August 2012 / Published online: 27 September 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract The only prominent line of singly ionized helium in the visible spectral range,
He II 4686 Å, is observed together with the He I 5015 Å singlet and the He I 4471 Å
triplet line in solar prominences. The Na D2 emission is used as a tracer for He II emissions
which are sufficiently bright to exceed the noise level near 10−6 of the disk-center intensity.
The prominences thus selected are characterized by small non-thermal line broadening and
almost absent velocity shifts, yielding narrow line profiles without wiggles. The reduced
widths [�λD/λ] of He II 4686 Å are 1.5 times broader than those of the He I 4471 Å triplet
and 1.65 times broader than those of the He I 5015 Å singlet. This indicates that the He lines
originate in a prominence–corona transition region with outwards increasing temperature.

Keywords Prominences · Quiescent · Helium ionization

1. Introduction

As the second most abundant element, helium plays an essential role in astrophysics. Nev-
ertheless, its spectrum is poorly understood. The faint He II 4685.7 Å line is of particular
interest, since it is the only important He II line that can be observed with ground-based
telescopes allowing higher spectral resolution than currently achieved for EUV He II lines
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from space: Stellmacher, Wiehr, and Dammasch (2003) find that the SUMER spectrograph
(designed for broad coronal lines) does not resolve the narrow emissions from cool promi-
nences, even after application of a maximum instrumental profile.

He II 4685.7 Å has been observed in prominences during eclipses (Sotirovski, 1965;
Poletto, 1967). Line-profile analyses, based on moderately resolved spectra from coron-
agraphs (Hirayama, 1972; Hirayama and Nakagomi, 1974) indicate that He II 4685.7 Å
originates from the same (cool) prominence regions as the usually observed Balmer, He I,
and metallic lines. Tandberg-Hanssen and Zirin (1959) observe in “flare-like loop” (i.e.
highly active and “hot”) prominences that the width of He II 4685.7 Å is larger than that of
He I 4471.5 Å, however, they neither discuss quiescent (“cool”) prominences nor the atomic
fine-structure broadening of He II, which may explain most of that excess. A detailed anal-
ysis of the He I and He II lines in solar prominences requires a high spectral resolution, a
high signal-to-noise ratio, and careful absolute calibration, which is difficult to achieve (see
Illing, Landman, and Mickey, 1975), but it is possible with modern CCD techniques.

The high ionization and excitation energies of 25 and 48 eV suggest that He II 4685.7 Å
may preferentially occur in hot prominences (Tkin > 8000 K), which are observed to
have a high He-to-Balmer emission ratio and to be highly structured (Stellmacher and
Wiehr, 1994). These, however, usually show important velocity shifts, which disperse the
line profiles. We therefore suppose that the opportunity to measure He II 4685.7 Å in-
creases if the emitted photons are concentrated in wavelength, i.e. yield narrow line pro-
files free from spatial Doppler shifts. Such emissions should occur in prominences with
negligible macro-velocities and low non-thermal line broadening, which are known to be
bright in Hα, although with a low He-to-Balmer ratio (Engvold and Livingston, 1971;
Stellmacher and Wiehr, 1995). Such prominences show significant Na D and Mg b emission
and saturated Hα (and even Hβ) profiles, but so far did not allow a He II 4685.7 Å line
profile analysis (Stellmacher and Wiehr, 2005).

2. Observations

In August 2011 we observed prominence emissions with the Gregory–Coudé telescope at the
Locarno Solar Observatory (IRSOL: Ramelli et al., 2006). The faint He II 4685.7 Å emission
is hardly visible in the raw spectra and can only be detected after careful subtraction of
the superposed aureole spectrum. We therefore used the Na D2 emission as a visual tracer
for prominence candidates with “spectral photon concentration” and thus sufficient He II

radiance. The emission regions so selected elevated only a few arcseconds over the limb and
occurred at low solar latitudes: ϕ < 30◦. We oriented the spectrograph slit perpendicular to
the solar limb by means of an image rotator, and pointed the telescope so that the light of the
solar disk did not pass the aperture in the prime focus (cf. slit-jaw images in Figure 1). This
avoids an illumination of the secondary and the two folding flat mirrors of the telescope,
thus reducing the stray-light (cf. Figure 2 in Stellmacher and Wiehr, 1970) – in our case by
almost a factor of two.

In order to obtain a sufficiently high signal-to-noise ratio for the faint He II line, we
chose a slit width of two arcseconds and superposed spectra of (typically) ten seconds ex-
posure, yielding total integration times between 50 and 300 seconds. We used an unmasked
“e2v CCD 55-30” sensor mounted on a ZIMPOL camera (Ramelli et al., 2010) and operated
the ZIMPOL system only in its intensity mode (Stokes I). The flat-field was deduced from
attenuated disk-center spectra, which also served for the absolute calibration of the emis-
sions. We took these spectra under identical conditions (exposure, slit width) as those for
the prominence (and aureole), except for a defined attenuation of the high disk-center light
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Figure 1 Raw spectra of a prominence (upper right panel) and the neighboring aureole (middle panel), i.e.
the prominence displaced by a few arcseconds from the slit (see left panels); difference image (lower panel)
with prominence emissions, color scale adapted to the faint Ti II 4468.4 Å line, the strong He I 4471.5 Å
emission is thus over-saturated; the Hα slit-jaw images show the chromosphere just at their bottoms, the
solar disk is outside the field-stop in the primary focus, seen in the left panels as the image boundary of
200 arcseconds diameter; the slit length (and thus the height of the spectra) amounts to 100 arcseconds.

level using carefully calibrated neutral filters. This allows one to express the CCD counts of
the prominence emission in terms of CCD counts at disk-center, which finally are converted
into absolute radiance [erg s−1 cm−2 sterad−1] using the tables of Labs and Neckel (1970).

The prominence emissions are superposed by an absorption spectrum from the solar disk
(the “aureole”) which is due to Rayleigh scattering mostly by dust particles on the telescope
mirrors and less in Earth’s atmosphere (cf. Figure 2 in Stellmacher and Wiehr, 1970); it
decreases in brightness with distance from the limb. We took such aureole spectra in the
immediate vicinity of the respective prominence, normalized them to fit the spatial intensity
distribution of the prominence spectra outside their emission lines, and subtracted them from
the prominence spectral images (see Figure 1). The “zero level” of the resulting emission
spectra is disturbed by spurious remnants of the aureole lines, arising from small (sub-pixel)
spectral shifts between prominence and aureole exposure (spectrograph seeing). That “λ-
offset” produces signatures that are anti-symmetrically shaped and can be described by the
derivative of the aureole absorption profiles. We largely removed these signals by either
adding or subtracting a fraction of the derivative of the respective aureole spectral profile. In
the corrected spectra we finally select spatial prominence regions with strong emission and
negligible Doppler structures.

On 2 and 4 August we observed exclusively Na D2, He II 4685.7 Å, and the He I 4471.5 Å
triplet line. After preliminary data reduction, we decided to include the He I 5015.7 Å singlet
line as well. The first spectrum of that line (9 August) showed the emission of the neigh-
boring Fe II 5018.4 line, drawing our attention also to the faint Ti II 4468.4 Å line in the
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Figure 2 Images of the prominence chain at the east limb +10◦ < ψ < +35◦ on 4 August 2011, in Hα
from the Kanzelhöhe Observatory (left panel, the observed prominence at 14 °N marked), in He II 304 Å and
Fe XVI 335 Å from SDO/AIA (middle panels), together with the corresponding disk filament on 6 August
(right panel, Kanzelhöhe).

vicinity of He I 4471.5 Å. The occurrence of such “chromospheric emissions”, usually ob-
served only during solar eclipses, establishes our selection criterion and demonstrates the
high quality of our observations. On August 13 we added further metallic lines (see Table 3)
with significant emission in the table of Sotirovski (1965).

Among dozens of prominences occurring in the first half of August 2011, we found only
few with markedly bright and narrow Na D2 profiles; however, only four of these showed
measurable He II 4685.7 Å emission. The range of observed total He I 4771.5 Å emission
(radiance), 745 < E(4471) < 5120 (see Table 1), largely exceeds the values E(4471) <

320 [erg s−1 cm−2 sterad−1] by Stellmacher and Wiehr (1997). This shows that prominences
with high He I radiance also yield a sufficient He II emission above the noise level of few
10−6 of the disk-center brightness (see Figure 3). Indeed, the chain of neighboring promi-
nences occurring on 4 August at the east limb between 10 °N and 35 °N contained two with
directly visible Na D2 emission, but only one (14 °N, marked in Figure 2) with Na D profiles
narrow and bright enough to allow observable He II 4686 emission. Neither the Hα or the
He II 304 Å appearance above the limb nor that of the corresponding filament on the disk
and even not the cold prominence body, seen in the Fe XVI 335 Å image as Lyman and He I

continuum absorption, gives an indication for a peculiarity of that prominence (E, 14 °N)
favoring the detectability of a He II 4685.7 Å emission.

3. Results

3.1. Line Radiance

Figure 3 shows the strongest and the faintest He II emissions obtained at a noise level
of ±1 × 10−6 of the disk-center radiance. In Table 1 we summarize the observed total-
line emission and compare them with observations by Sotirovski (1965) and by Po-
letto (1967). Our low-latitude prominences (ϕ < 30◦) show much stronger radiance of
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Figure 3 Strongest and faintest He II 4685.7 Å profiles from 2 and 13 August (note the different ordinate
scales) together with Ti II 4468.4 Å and He I 4471.5 Å (cf. lower panel of Figure 1). The colored lines give
Gaussian fits to the upper profile parts. The atomic fine-structure components at 4685.35 Å and at 4471.7 Å
(blue arrows) prove the high spectral resolution achieved.

the helium lines than the eclipse observations. The highest observed Na D2 radiance of
1010 [erg s−1 cm−2 sterad−1] (see Table 1) corresponds to a total Hα emission of 2.5 ×
105 [erg s−1 cm−2 sterad−1], which, in turn, is related to a large optical thickness of
τ0(Hα) ≈ 7.0 (according to observations by Stellmacher and Wiehr, 1994, 2005); this proves
that our criterion indeed selects thick prominences.

We find mean radiance ratios E(4471)/E(5015) = 8.7 for triplet-to-singlet and E(4471)/

E(4686) = 51 for triplet-to-He II (cf. Table 1). These values of the ratios are comparable
to those obtained by Sotirovski (1965) and by Poletto (1967) from eclipse observations,
although our prominences are much brighter. Hence, the radiance ratios seem to be valid
over a large range of He emission.

3.2. Line Widths

The spectrograph slit of 0.25 mm width (corresponding to two arcseconds) yields a typi-
cal instrumental line broadening of �λe/λ ≈ 8 × 10−6, which we apply to our observed
line profiles. In addition, one has to consider the atomic fine-structure broadening: For
He I 4471.5 five main components almost coincide (�λ = 19 mÅ); an additional faint com-
ponent 210 mÅ red-wards (well visible in the lower panel of Figure 3) does not broaden the
full width at half maximum [FWHM] of the composed profile.
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Figure 4 Superposition of the seven strongest (among 13) atomic fine-structure components of He II 4685.7,
each one with FWHM = 260 mÅ (chosen to fit the 2 August observation Figure 3). The resulting convolved
profile (red line, max. normalized) with FWHM = 325 mÅ (dashed lines) is 1.25 times broader than the
“intrinsic” (e.g. blue) profile of each component.

He II 4685.7 Å is composed of 13 atomic fine-structure components, leading to a sig-
nificant line broadening. A corresponding deconvolution has to take into account that the
various atomic fine-structure components have different intensity but a unique (“intrinsic”)
width. He II 4685.7 Å consists of two close main components (�λ = 0.53 mÅ, blue line
in Figure 4); a third one, 100 mÅ red-wards (green line in Figure 4), broadens the FWHM
of the composed profile (red line in Figure 4) by a factor of 1.25, which is independent of
the intrinsic profile width. Two atomic fine-structure components (orange and yellow lines
in Figure 4) produce a satellite at −350 mÅ, which is hardly visible in the upper left panel
of Figure 3 but does not influence the FWHM of the Gaussian fit to the upper part of the
observed emission profile.

Considering the He II fine-structure broadening, we find that the He II 4685.7 Å line is
1.5 times broader than the He I 4471.5 Å triplet line, which, in turn, is 1.1 times broader
than the He I 5015.7 Å singlet line (Table 2).

3.3. Kinetic Temperature

The Doppler widths [�λD] from atoms of different mass generally allow one to sepa-
rate the thermal [Tkin] from the (Maxwellian) non-thermal [vnth] line broadening: v2

0 =
(c�λD/λ)2 = 2RTkin/μ+v2

nth, if the lines are emitted in the same formation region. Associ-
ating [v2

0(1/μ)]Na D with [v2
0(1/μ)]He from the smallest He I (i.e. the singlet) line, we would

obtain Tkin ≈ 104 K; a temperature too high for our selected dense, Hα bright, and optically
thick prominences. These typically show for hydrogen [�λD/λ]H = 3.7×10−5 (Stellmacher
and Wiehr, 1994), which would yield Tkin = 7000 K with the v0 value observed for Na D2

on 13 August (dashed line in Figure 5). The corresponding ordinate offset gives the small
value of vnth = 2.8 km s−1, confirming our criterion of “spectral photon concentration” (see
the introduction).

The v2
0 values of the singly ionized metallic lines are found above the dashed line in

Figure 5, indicating excess broadening. This result disagrees with Landman (1985), who
found Fe II 5169 to be smaller than Mg I b2 and b4. Also, our observed v2

0 values for He I
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Figure 5 Velocity v2
0 = (c�λD/λ)2 versus inverse atomic weight 1/μ for the 13 August prominence; the

dashed line connects v2
0(Na I) with a reasonable v2

0 (H I) corresponding to [�λe/λ]H = 3.7 × 10−5 from

Stellmacher and Wiehr (1994); the v2
0 values of He II and of singly ionized metallic lines are located above

that line; v2
0(He II) = 173 is outside the ordinate range.

singlet and triplet and He II are above the dashed line [Tkin = 7000 K; vnth = 2.8 km s−1]
in Figure 5. Keeping vnth = 2.8 km s−1, the widths of these three helium lines observed on
13 August would correspond to Tkin values of 9400 K, 10 800 K, and 40 000 K, respectively;
for constant Tkin = 7000 K they would yield vnth values of 7.3, 8.1, and 15 km s−1.

4. Discussion

4.1. Line Radiance

In order to correctly describe the helium spectrum in the prominence plasma, one has to
consider the statistical equilibrium of ortho-, para-, and ionized helium and their interaction
(e.g. Labrosse et al., 2010). Observations of spectrally well-resolved line profiles are re-
quired for the understanding of the helium spectrum. The optically thin He II 4685.7 Å line
is poorly documented from observations. Its excitation is sensitive to radiation and collisions
(Yakovkin and Zeldina, 1971; Labrosse et al., 2010), but also the influence of turbulence and
of flows may enhance the He II emission (Jordan et al., 1997; Patsourakos and Vial, 2002).
A blending with Ni I 4686.22 Å, mentioned by Worden, Beckers, and Hirayama (1973) in
their study of chromospheric emissions, is not indicated in our prominence observations.

Our radiance ratio, 7.2 < E(4471)/E(5015) < 9.8 (Table 1), is in good agreement with
E(4471)/E(5015) = 9.5 from models with T = 8000 K and nH ≈ 1010 cm−3 by Heasley,
Mihalas, and Poland (1974). However, the radiance ratio 41 < E(4471)/E(4686) < 62,
found in our study as well as in the eclipse data (Sotirovski, 1965; Poletto, 1967), is smaller
than E(4471)/E(4686) = 6950 obtained from those models. The latter ratio would predict
for our faintest prominence (13 August with E(4471) = 745) a He II 4685.7 Å radiance of
E(4686) ≈ 0.1 [erg s−1 cm−2 sterad−1] far below the noise level – even for eclipse obser-
vations. Those models are isothermal; recent models, however, with a prominence–corona
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Table 1 Total line emission (radiance) [erg s−1 cm−2 sterad−1] in comparison with eclipse data from
Sotirovski (1965) and from Poletto (1967).

Position W22 °N E14 °N E30 °N E31 °N E23 °N Sotirovski Poletto + Rigutti

Obs.date 2 August 4 August 9 August a 9 August b 13 August

He II 4685.7 105 35 38 – 13 4.0 5.5

He I 4471.5 (tr) 5119 1440 1940 1300 745 105 80

He I 5015.7 (si) – – 198 180 82 19 –

Fe II 5018.4 – – 225 340 37 – –

Ti II 4468.4 85 185 64 105 31 – –

Na D2 5890 1010 540 715 970 70 – –

tripl/He II 49 41 50 – 63 26 15

tripl/singl – – 9.8 7.2 9.1 5.7 –

tripl/Na D2 3.0 2.7 2.7 1.3 10.6 – –

transition region, PCTR, show an increased He ionization (see Labrosse and Gouttebroze,
2004). Our observed E(4471)/E(4686) ratio then favors an origin of He II 4685.7 Å in the
PCTR.

4.2. Line Widths

A further hint of the PCTR contribution to the He lines is given by the different line widths
observed for the three atomic states: singly ionized, triplet, singlet. The reduced width
[RW = �λD/λ] of the He II 4685.7 Å line (after deconvolution of the atomic fine-structure)
is significantly larger than that of the He I triplet line: 1.18 < RW(4686)/RW(4471) < 1.8,
and the triplet is broader than the singlet line: 1.07 < RW(4471)/RW(5015) < 1.09 (see
Table 2). The latter result disagrees with observations by Heasley, Tandberg-Hanssen, and
Wagner (1975), bearing in mind their lower spectral resolution. Since the He I lines are even
visible in our raw spectra (see Figure 1; in contrast to the faint He II 4685.7 Å), the observed
excess width RW(4471) > RW(5015) is outside the error bars of at most 2 % (see Table 2).

The different widths of the He II and He I triplet and singlet lines may be due to
their formation in prominence regions of different temperature. Indeed, Stellmacher, Wiehr,
and Dammasch (2003) observe “hotter” lines to be more pronounced in such promi-
nence regions which show less radiance in “cooler” lines. Labrosse (private communica-
tion, 2011) finds among 100 models with a PCTR of 105 K (cf. Labrosse and Goutte-
broze, 2004) mean ratios of the reduced widths of 1.1 < RW(4686)/RW(4471) < 1.6 and
1.03 < RW(4471)/RW(5015) < 1.2, respectively, in good agreement with our results. The
PCTR then seems to be essential for an explanation of the observed “hierarchy” of He line
widths.

The difference between the singlet and the triplet emission is explained by the fact that
the lowest He I energy level belongs to the singlet system, which can thus be populated di-
rectly by EUV radiation, while the triplet levels are populated from the (singlet) ground
state mainly by ionization and recombination. Collisional excitation plays a minor role
in cool prominence regions, which are clearly visible as dark absorption features in the
Fe XVI 335 Å image (see Figure 2). These cool (and dense) prominence cores emit the nar-
row Na D lines, which correspond to low Tkin and vnth values as, e.g. 7000 K and 2.8 km s−1

for 13 August in Figure 5.
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Table 2 Reduced Doppler widths �λD/λ [10−5]; the values for He II 4685.7 Å after deconvolution of the
atomic fine-structure; numbers in parentheses give uncertainties originating from the fitting procedure.

Emission line 2 August 4 August 9 August a 9 August b 13 August

He II 4685.7 5.64 (0.12) 3.72 (0.13) 4.21 (0.22) – 4.39 (0.39)

He I 4471.5 (tripl) 4.07 (0.01) 3.14 (0.02) 2.45 (0.01) 2.21 (0.01) 2.43 (0.01)

He I 5015.7 (singl) – – 2.24 (0.03) 2.07 (0.04) 2.28 (0.02)

Fe II 5018.4 – – 1.53 (0.02) 1.05 (0.01) 1.32 (0.02)

Ti II 4468.4 3.28 (0.04) 2.30 (0.04) 1.17 (0.05) 0.92 (0.02) 1.21 (0.08)

Na D2 5890 3.17 (0.60) 2.13 (0.03) 1.36 (0.02) 1.08 (0.01) 1.20 (0.01)

He II/tripl 1.37 1.18 1.72 – 1.80

tripl/singl – – 1.09 1.07 1.07

tripl/Na D2 1.30 1.47 1.79 2.05 2.13

Table 3 Reduced Doppler width �λD/λ [10−5] and line radiance in absolute units [erg s−1 cm−2 sterad−1]
of the metallic lines observed in the prominence at the east limb, 23 °N on 13 August 2011; radiance data are
compared with Sotirovski (1965).

Ion Sr II Ca I Ti II Fe II Ba II Ti II Mg II Na I Na I

λ0 [Å] 4215 4227 4468 4549 4554 4563 4571 5890 5896

Reduced width 2.37 2.31 1.21 1.59 1.15 1.59 (0.87) 1.20 1.14

Obs. radiance 116 36.1 31.1 19.1 21.5 21.8 6.7 70 46

Sotirovski 34.3 21.8 7.5 7.3 4.2 4.5 6.3 4.8 4.4

The broad He lines, however, originate in hotter prominence regions, where collisional
excitation (and ionization) becomes effective. The observed “hierarchy” of excess broaden-
ing from He I singlet to He I triplet and He II lines may either be explained by different-
temperature threads or by a PCTR with outwards increasing temperature (or vnth). But the
width excess of He II 4685.7 Å corresponds to 40 000 K (cf. end of Section 3), which agrees
with the formation temperature for He II lines calculated by Gouttebroze and Labrosse
(2009). Hence, a temperature increase through the PCTR, as assumed in the models by
Heinzel and Anzer (2001), may be more realistic than an increase of vnth. Also a combined
outwards increase of both Tkin and vnth might fit our observations.

The singly ionized metallic lines show a width excess similar to He I 4471 Å: In Figure 5
their v0 exceed ≈1.2 times the values expected for Tkin = 7000 K and vnth = 2.8 km s−1.
Hence, the singly ionized metallic lines (Table 3) may be emitted from similar layers as the
He I triplet line. The rather tight relation of radiance and widths of Na D, He I 4471 Å, and
He II 4686 Å (see Tables 1 and 2) favors a PCTR surrounding each individual thread rather
than the prominence as a whole.
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