82 research outputs found

    Boosting the Performance of One-Step Solution-Processed Perovskite Solar Cells Using a Natural Monoterpene Alcohol as a Green Solvent Additive

    Get PDF
    The perovskite film is the core of a perovskite solar cell (PSC), and its quality is crucial for the performance of such devices. The morphology, crystallinity, and surface coverage of the perovskite layer greatly affect the power conversion efficiency (PCE), hysteresis, and long-term stability of PSCs. The incorporation of appropriate solvent additives in the perovskite precursor solution is an effective strategy to control the film morphology and reduce the defects and grain boundaries. However, the commonly used solvent additives are environmentally harmful and highly toxic. In this work, α-terpineol (a nontoxic, eco-friendly, and low-cost monoterpene alcohol) is employed for the first time as an alternative green solvent additive to improve the quality of one-step solution-processed CH3NH3PbI3–xClx films and to restrain nonradiative recombination in the corresponding devices. An in-depth investigation of the physicochemical effects induced by such a high-boiling-point, polar protic solvent when incorporated into a conventional perovskite solvent system is provided. The collected data demonstrate that the addition of a precise amount of α-terpineol can generate uniform and highly crystalline perovskite films with improved photovoltaic performances. Through this approach, the PCE of planar n–i–p PSCs is boosted up to 17.5% (against 16.1% of the top control device) with reduced hysteresis and enhanced ambient stability

    Pseudo-Planar Organic Heterojunctions by Sequential Printing of Quasi-Miscible Inks

    Get PDF
    This work deals with the interfacial mixing mechanism of picoliter (pL)-scale droplets produced by sequential inkjet printing of organic-based inks onto ITO/PET surfaces at a moderately high Weber number (~101). Differently from solution dispensing processes at a high Bond number such as spin coating, the deposition by inkjet printing is strictly controlled by droplet velocity, ink viscosity, and surface tension. In particular, this study considers the interfacial mixing of droplets containing the most investigated donor/acceptor couple for organic solar cells, i.e., poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM), showing how low-viscosity and low-surface energy inks can be leveraged for the fabrication of an interface suitable for a pseudo-planar heterojunction (pseudo-PHJ) organic solar cell (OSC) that is a convenient alternative to a bulk heterojunction (BHJ) OSC. The resulting thin-film morphology and molecular organization at the P3HT/PCBM interface are investigated, highlighting the roles of dissolution-driven molecular recirculation. This report represents a first step toward the sequential inkjet printing fabrication of pseudo-PHJ OSCs at low consumption of solvents/chemicals

    Improved Photocatalytic Activity of Polysiloxane TiO2 Composites by Thermally Induced Nanoparticle Bulk Clustering and Dye Adsorption

    Get PDF
    Fine control of nanoparticle clustering within polymeric matrices can be tuned to enhance the physicochemical properties of the resulting composites, which are governed by the interplay of nanoparticle surface segregation and bulk clustering. To this aim, out-of-equilibrium strategies can be leveraged to program the multiscale organization of such systems. Here, we present experimental results indicating that bulk assembly of highly photoactive clusters of titanium dioxide nanoparticles within an in situ synthesized polysiloxane matrix can be thermally tuned. Remarkably, the controlled nanoparticle clustering results in improved degradation photocatalytic performances of the material under 1 sun toward methylene blue. The resulting coatings, in particular the 35 wt % TiO2-loaded composites, show a photocatalytic degradation of about 80%, which was comparable to the equivalent amount of bare TiO2 and two-fold higher with respect to the corresponding composites not subjected to thermal treatment. These findings highlight the role of thermally induced bulk clustering in enhancing photoactive nanoparticle/polymer composite properties

    Self-Cleaning Bending Sensors Based on Semitransparent ZnO Nanostructured Films

    Get PDF
    The design of multifunctional nanostructured materials is the key to the development of smart wearable devices. For instance, nanostructures endowed with both piezoelectric and photocatalytic activities could well be the workhorse for solar-light-driven self-cleaning wearable sensors. In this work, a simple strategy for the assembly of a flexible, semitransparent piezophotocatalytic system is demonstrated by leveraging rational wet chemistry synthesis of ZnO-based nanosheets/nanoflowers (NSs/NFs) under basic pH conditions onto flexible ITO/PET supports. A KMnO4 pretreatment before the ZnO synthesis (seeded ZnO) allows for the control of the density, size, and orientation of the NSs/NFs systems compared to the systems produced in the absence of seeding (seedless ZnO). The electrical response of the sensors is extracted at a 1 V bias as a function of bending in the interval between 0 and 90°, being the responsivity toward bending significantly enhanced by the KMnO4 treatment effect. The photocatalytic activity of the sensors is analyzed in aqueous solution (methylene blue, 25 ÎŒM) by a solar simulator, resulting in similar values between seedless and seeded ZnO. Upon bending the sensor, the photocatalytic activity of seedless ZnO is almost unaffected, whereas that of seeded ZnO is improved by about 25%. The sensor’s reusability and repeatability are tested in up to three different cycles. These results open up the way toward the seamless integration of bending sensitivity and photocatalysis into a single device

    Fluorescent Boron Oxide Nanodisks as Biocompatible Multi-messenger Sensors for Ultrasensitive Ni2+^{2+} Detection

    Get PDF
    Boron-based nanocomposites are very promising for a wide range of technological applications, spanning from microelectronics to nanomedicine. A large variety of B-based nanomaterials has been already observed, such as borospherene, B nanotubes and nanoparticles, and boron nitride nanoparticles. However, their fabrication usually involves toxic precursors or leads to very low yields or small boron atom concentration. In this work, we report the synthesis of nanometric B2_{2}O3_{3} nanodisks, a family of nanomaterials with a quasi-2D morphology capable of intense fluorescence in the visible range. Such as boron-based nanomaterial, which we synthesized by pulsed laser ablation of a boron target, is water-dispersible and nontoxic, and displays a highly crystalline structure. Moreover, its bright blue photoluminescence is highly sensitive and selective for the presence of Ni2+^{2+} ions in solution, down to extremely small concentrations in the picomolar range. The results are very promising in view of the use of such novel B2_{2}O3_{3} nanodisks as ultrasensitive multi-messenger Ni2+^{2+} nanosensors

    Gamma-ray-induced structural transformation of GQDs towards the improvement of their optical properties, monitoring of selected toxic compounds, and photo-induced effect on bacterial strains

    Get PDF
    Structural modification of different carbon-based nanomaterials is often necessary to improve their morphology and optical properties, particularly the incorporation of N-atoms in graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL). Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots, to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated as a PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7- yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was 5.4 ”mol L−1 for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-on mechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PL of GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration (turn-on). LOD was 2.03 ”mol L−1 . These results suggest that modified GQDs can be used as an efficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dots was investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cells were exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, the toxic effects were not observed

    Improved performance in flexible organic solar cells by using copolymeric phase-separation modulators

    Get PDF
    One of the main problems related to the low performance of the organic solar cells (OSCs), concerns the low mobility of the materials constituting the heterojunction. Indeed, the poor charge transport in the active layer is the principal cause of a competition between separation and recombination of the photogenerated carriers. In this regard, a major obstacle to enhance OSCs efficiency is developing strategies to optimize the exciton dissociation and, consequently, the charge collection at the electrodes. Donor and acceptor systems must be well mixed on the length scale of 5 – 20 nm (exciton diffusion length) to meet the criteria for efficient exciton dissociation. In addition, the network structure should involve continuous donor-acceptor pathways for efficient carrier transport. The most common practice to achieve this goal is by thermal or solvent annealing of active layer.[1] However, this approach often leads to an unwanted phase segregation with formation of large domains where only a small fraction of excitons could diffuse to the donor-acceptor interface.[2] In this work, we show how this challenge is achievable by incorporating phase-separation modulators into bulk heterojunction (BHJ). In particular, three copolymers based on polythiophene and C60 units have been designed, easily synthesized, characterized, and employed as additive in P3HT:PCBM devices. The effect of the thienyl spacer length between C60 monomers on optoelectronic properties, morphology, and structure of heterojunction has been examined using several techniques (NMR, FTIR, XPS, XRD and AFM). We observed that small quantities of these systems can play a critical role in tuning the device morphology by improving the phase separation in thin film heterojunction.[3] In particular, these copolymers act as phase separation modulators by controlling the growth of donor/acceptor domains in the heterojunction, during the thermal annealing process. Indeed, by employing copolymers containing oligothiophenic chains with size of about 8 nm, a large number of domains with a size comparable to the length scale of exciton diffusion are generated, resulting in the highest power conversion efficiency (PCE) (4.46 %) and short current density (JSC) (16.15 mA cm-2) values reported so far for P3HT:PCBM solar cells on plastic substrates. Moreover, the results obtained in preliminary investigations on the other devices containing different fullerene acceptors seem to show the effectiveness and the generality of our approach. Finally, bending tests showed that OSCs with copolymers maintain higher level of performance than reference devices, thus giving new perspectives to applications of flexible photovoltaics

    Synergies and compromises between charge and energy transfers in three-component organic solar cells

    Get PDF
    In this paper, we developed different three-component organic heterojunction structures supported by PET/ITO substrates with the aim to study the possible synergies and/or compromises between charge transfer (CT) and energy transfer (ET) processes in organic solar cells (OSCs). As components, we employed poly(3-hexylthiophene-2,5-diyl) (P3HT; donor), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM; acceptor) and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) that is known to give good ET to P3HT. At first, we observed that in a planar heterojunction (PHJ) solar cell, F8BT has to be properly located in between P3HT and PCBM to get a cascade energy level configuration allowing for a better CT and power conversion efficiency. Then, we observed that by producing a P3HT:F8BT blend, the energy transfer process can be improved in the P3HT:F8BT/PCBM active layer. This may enable decreasing the thickness of the active layer while maintaining a similar PCE that is very interesting for the development of transparent OSCs. However, the P3HT:F8BT blend limits the P3HT-PCBM CT with respect to a P3HT/F8BT/PCBM PHJ, showing that a compromise between CT and ET is needed to get a higher PCE or higher transparency. By the above approach, in this paper, we developed highly transparent heterojunction structures for solar cell devices with PCEs comparable to those observed from the colorful reference P3HT/PCBM PHJ solar cells on PET/ITO substrates
    • 

    corecore