251 research outputs found
Closed sequential pattern mining for sitemap generation
AbstractA sitemap represents an explicit specification of the design concept and knowledge organization of a website and is therefore considered as the website's basic ontology. It not only presents the main usage flows for users, but also hierarchically organizes concepts of the website. Typically, sitemaps are defined by webmasters in the very early stages of the website design. However, during their life websites significantly change their structure, their content and their possible navigation paths. Even if this is not the case, webmasters can fail to either define sitemaps that reflect the actual website content or, vice versa, to define the actual organization of pages and links which do not reflect the intended organization of the content coded in the sitemaps. In this paper we propose an approach which automatically generates sitemaps. Contrary to other approaches proposed in the literature, which mainly generate sitemaps from the textual content of the pages, in this work sitemaps are generated by analyzing the Web graph of a website. This allows us to: i) automatically generate a sitemap on the basis of possible navigation paths, ii) compare the generated sitemaps with either the sitemap provided by the Web designer or with the intended sitemap of the website and, consequently, iii) plan possible website re-organization. The solution we propose is based on closed frequent sequence extraction and only concentrates on hyperlinks organized in "Web lists", which are logical lists embedded in the pages. These "Web lists" are typically used for supporting users in Web site navigation and they include menus, navbars and content tables. Experiments performed on three real datasets show that the extracted sitemaps are much more similar to those defined by website curators than those obtained by competitor algorithms
Semantic-Based Destination Suggestion in Intelligent Tourism Information Systems
Abstract. In recent years, there has been a growing interest in mining trajectories of moving objects. Advances in this data mining task are likely to support the development of new applications such as mobility prediction and service pre-fetching. Approaches reported in the literature consider only spatio-temporal information provided by collected trajectories. However, some applications demand additional sources of information to make correct predictions. In this work, we consider the case of an on-line tourist support service which aims at suggesting places to visit in the nearby. We assume tourist interests depend both on her/his geographical position and on the “semantic ” information extracted from geo-referenced documents associated to the visited sites. Therefore, the suggestion is based on both spatio-temporal data as well as on textual data. To deal with tourist’s interest drift we apply a time-slice density estimation method. Experimental results are reported for two scenarios.
PRILJ: an efficient two-step method based on embedding and clustering for the identification of regularities in legal case judgments
In an era characterized by fast technological progress that introduces new unpredictable scenarios every day, working in the law field may appear very difficult, if not supported by the right tools. In this respect, some systems based on Artificial Intelligence methods have been proposed in the literature, to support several tasks in the legal sector. Following this line of research, in this paper we propose a novel method, called PRILJ, that identifies paragraph regularities in legal case judgments, to support legal experts during the redaction of legal documents. Methodologically, PRILJ adopts a two-step approach that first groups documents into clusters, according to their semantic content, and then identifies regularities in the paragraphs for each cluster. Embedding-based methods are adopted to properly represent documents and paragraphs into a semantic numerical feature space, and an Approximated Nearest Neighbor Search method is adopted to efficiently retrieve the most similar paragraphs with respect to the paragraphs of a document under preparation. Our extensive experimental evaluation, performed on a real-world dataset provided by EUR-Lex, proves the effectiveness and the efficiency of the proposed method. In particular, its ability of modeling different topics of legal documents, as well as of capturing the semantics of the textual content, appear very beneficial for the considered task, and make PRILJ very robust to the possible presence of noise in the data
Semi-supervised Predictive Clustering Trees for (Hierarchical) Multi-label Classification
Semi-supervised learning (SSL) is a common approach to learning predictive
models using not only labeled examples, but also unlabeled examples. While SSL
for the simple tasks of classification and regression has received a lot of
attention from the research community, this is not properly investigated for
complex prediction tasks with structurally dependent variables. This is the
case of multi-label classification and hierarchical multi-label classification
tasks, which may require additional information, possibly coming from the
underlying distribution in the descriptive space provided by unlabeled
examples, to better face the challenging task of predicting simultaneously
multiple class labels.
In this paper, we investigate this aspect and propose a (hierarchical)
multi-label classification method based on semi-supervised learning of
predictive clustering trees. We also extend the method towards ensemble
learning and propose a method based on the random forest approach. Extensive
experimental evaluation conducted on 23 datasets shows significant advantages
of the proposed method and its extension with respect to their supervised
counterparts. Moreover, the method preserves interpretability and reduces the
time complexity of classical tree-based models
DENCAST: distributed density-based clustering for multi-target regression
Recent developments in sensor networks and mobile computing led to a huge increase in data generated that need to be processed and analyzed efficiently. In this context, many distributed data mining algorithms have recently been proposed. Following this line of research, we propose the DENCAST system, a novel distributed algorithm implemented in Apache Spark, which performs density-based clustering and exploits the identified clusters to solve both single- and multi-target regression tasks (and thus, solves complex tasks such as time series prediction). Contrary to existing distributed methods, DENCAST does not require a final merging step (usually performed on a single machine) and is able to handle large-scale, high-dimensional data by taking advantage of locality sensitive hashing. Experiments show that DENCAST performs clustering more efficiently than a state-of-the-art distributed clustering algorithm, especially when the number of objects increases significantly. The quality of the extracted clusters is confirmed by the predictive capabilities of DENCAST on several datasets: It is able to significantly outperform (p-value ) state-of-the-art distributed regression methods, in both single and multi-target settings
Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction
BACKGROUND: Ontologies and catalogs of gene functions, such as the Gene Ontology (GO) and MIPS-FUN, assume that functional classes are organized hierarchically, that is, general functions include more specific ones. This has recently motivated the development of several machine learning algorithms for gene function prediction that leverages on this hierarchical organization where instances may belong to multiple classes. In addition, it is possible to exploit relationships among examples, since it is plausible that related genes tend to share functional annotations. Although these relationships have been identified and extensively studied in the area of protein-protein interaction (PPI) networks, they have not received much attention in hierarchical and multi-class gene function prediction. Relations between genes introduce autocorrelation in functional annotations and violate the assumption that instances are independently and identically distributed (i.i.d.), which underlines most machine learning algorithms. Although the explicit consideration of these relations brings additional complexity to the learning process, we expect substantial benefits in predictive accuracy of learned classifiers. RESULTS: This article demonstrates the benefits (in terms of predictive accuracy) of considering autocorrelation in multi-class gene function prediction. We develop a tree-based algorithm for considering network autocorrelation in the setting of Hierarchical Multi-label Classification (HMC). We empirically evaluate the proposed algorithm, called NHMC (Network Hierarchical Multi-label Classification), on 12 yeast datasets using each of the MIPS-FUN and GO annotation schemes and exploiting 2 different PPI networks. The results clearly show that taking autocorrelation into account improves the predictive performance of the learned models for predicting gene function. CONCLUSIONS: Our newly developed method for HMC takes into account network information in the learning phase: When used for gene function prediction in the context of PPI networks, the explicit consideration of network autocorrelation increases the predictive performance of the learned models. Overall, we found that this holds for different gene features/ descriptions, functional annotation schemes, and PPI networks: Best results are achieved when the PPI network is dense and contains a large proportion of function-relevant interactions
Predictive modeling of PV energy production: How to set up the learning task for a better prediction?
In this paper, we tackle the problem of power prediction of several photovoltaic (PV) plants spread over an extended geographic area and connected to a power grid. The paper is intended to be a comprehensive study of one-day ahead forecast of PV energy production along several dimensions of analysis: i) The consideration of the spatio-temporal autocorrelation, which characterizes geophysical phenomena, to obtain more accurate predictions.ii) The learning setting to be considered, i.e. using simple output prediction for each hour or structured output prediction for each day. iii) The learning algorithms: We compare artificial neural networks, most often used for PV prediction forecast, and regression trees for learning adaptive models. The results obtained on two PV power plant datasets show that: taking into account spatio/temporal autocorrelation is beneficial; the structured output prediction setting significantly outperforms the non-structured output prediction setting; and regression trees provide better models than artificial neural networks
- …