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Abstract. In recent years, there has been a growing interest in mining
trajectories of moving objects. Advances in this data mining task are
likely to support the development of new applications such as mobility
prediction and service pre-fetching. Approaches reported in the liter-
ature consider only spatio-temporal information provided by collected
trajectories. However, some applications demand additional sources of
information to make correct predictions. In this work, we consider the
case of an on-line tourist support service which aims at suggesting places
to visit in the nearby. We assume tourist interests depend both on her/his
geographical position and on the “semantic” information extracted from
geo-referenced documents associated to the visited sites. Therefore, the
suggestion is based on both spatio-temporal data as well as on textual
data. To deal with tourist’s interest drift we apply a time-slice density
estimation method. Experimental results are reported for two scenarios.

1 Introduction

Tourism has become, in the second part of last century, one of the most important
economic activities in the world. According to World Travel and Tourism Council
(WTTC), in 2005, about 11% of World Gross Domestic Product (GDP) was
generated by the tourism sector and a considerable part (more than 200 million
people) of the global workforce is employed [3]. In addition, it is predicted to
be one of a few businesses that will continue to grow at an appreciable rate
(around 5% per year) and to generate job opportunities in the future. Tourism
is nowadays an important vehicle for regional and national developments and,
for many countries, it represents the major contributor to the local economy.

More recently, tourism has become an extremely dynamic system [7] and
the intensified (web-based) marketing efforts of all tourism organizations have
paved the way for new advances in knowledge based technologies applied to the
destination management problem [16]. According to the definition provided in
[10], a tourism destination may be intended as a geographical area that offers
to the tourist the opportunity of exploiting a variety of attractions and services.
Recent advances in positioning technology (Global Positioning Systems - GPS)
permit to track the tourist position in time and space (trajectories) and, then, to
consider the tourist as a moving object into a predefined spatio-temporal space.



Knowledge on the past positions of the tourist can be used both to suggest the
next preferred destination and to anticipate or pre-fetch possible services there.

In the machine learning literature, several methods have been proposed to
learn location prediction models either from the history of movements of a single
object [11, 19] or from the movements of all objects in an area [13]. In both cases,
the predictor capitalizes only on the movement histories (trajectories) and its
induction is based on the assumption that objects tend to follow common paths.

In this work, we assume each tourist is an independent individual with
personal preferences and interests, therefore, the location prediction model is
tourist-specific and has to be learned only from the tourist’s movement history.
This adds complexity to the learning task, and to face the inherent challenges
we resort to additional information made available by the tourist during her/his
visits. In particular, we consider the documents consulted by the tourist at the
visited sites in order to maintain an informative profile of the tourist. This profile,
initially empty, is dynamically updated on the basis of both the current spatial
position of the tourist and the textual content of the consulted documents.

The main assumption of this work is that a tourist moves towards a close
destination which is as much “semantically” consistent with her/his profile as
possible. This assumption is supported by the observation of how tourists typi-
cally use guides, either paper or electronic (for examples of iPhone & iPod guides
see http://www.phaidon.com/travel). Indeed, most of tourist guides suggest a set
of thematic itineraries and tourists choose and follow one of them according to
their specific interests and preferences. Additionally, electronic guides may also
provide several documents which describe different aspects of a touristic site.
While visiting a site, a tourist may consult related documents which are of
her/his interest. In this work, we use information on consulted documents to
update the tourist profile and we predict the next destination by minimizing the
drift of tourist interests. To deal with tourist’s interest drift we apply a time-slice
density estimate [1] in order to measure the rate of change of tourist’s interests
over a time horizon when the tourist moves towards the new destination. In case
a tourist consults no documents, only geographical information is used to sug-
gest the next destination. As in many recommendation systems, the limit of the
present approach is represented by tourists who perform “random” explorations.

The paper revises and extends the work presented in [4]. The paper is orga-
nized as follows. In the next section, some related works are discussed. In Section
3, the proposed method is presented, while empirical results are reported and
discussed in Section 4. Conclusions are drawn in Section 5.

2 Related Works

Roots of this work are in the research field of moving objects prediction. The
pioneering work in this area is presented in [12] where moving object behavior
is modeled as repetitions of elementary movement patterns (e.g., linear or cir-
cular). The preferential next location is suggested by means of a mobile motion
prediction algorithm that is highly sensitive to random movements of the object.



Subsequently, Markov chain models have been studied in order to estimate
the probability of an object’s movement from one region or cell to another at
the next time period. Ishikawa et al. [9] propose to derive transition probabilities
between cells over the space from indexed trajectories. Histograms are used to
predict the next cell in which the object would probably move in the future.

Other approaches use sequential patterns in order to model trajectories in
terms of ordered sequences of time-stamped locations [8, 18]. Most of these ap-
proaches try to predict the movement of an object on the basis of the assump-
tion that people typically follow the crowd. Morzy [14] proposes to periodically
mine offline historical data of other objects moving on the same area and dis-
cover frequent trajectories of objects representing popular movement routes.
The unknown location of a moving object can be predicted by ranking on-line
trajectories which match past history of the object, according to support and
confidence, and using the selected trajectory to predict next destination. More
recently, Monreale et al. [13] propose WhereNext which extracts trajectory pat-
terns as a concise representation of behavior of moving objects, that is, sequences
of regions frequently visited within a travel time. A decision tree is then learned
from trajectory patterns that insist a certain area and it is used to predict the
next location of a new trajectory by finding the best matching path in the tree.

Methods described above suggest the destination of a moving object based
upon the movement history of either the object itself or the objects which move
in the surrounding area. Although, space and time are considered, none of these
methods takes into account semantic information which may be descriptive of
the object profile and be bearing of information on the next destination. The
concept of trajectories enriched with semantic information was originally for-
malized in [2] where authors consider, as semantic information, the name of the
geographic layer (e.g., hotels, museums) associated to each site in the trajectories
(called stops). In a semantic based moving environment, as that considered in
this paper, we do not consider only the information on the geographical layer, but
all the semantic information which can be automatically extracted from textual
documents possibly geo-referenced with the trajectory sites. This semantic infor-
mation is intended to express the interests, preferences and needs of the object.
As in a stream, each time the object moves towards a new site, semantic infor-
mation geo-referenced with the site contribute to dynamically construct/update
the object profile. Hence, it is reasonable to assume that an object moves towards
a site that slightly changes the profile or, in other terms, that is semantically
close to the object profile. Following this idea, our point of view is that suggest-
ing a semantic based next destination can be intended as an application of the
change diagnosis in evolving data streams. In this area, the seminal work is that
of Aggarwal [1], which firstly proposes to capture the change of spatially refer-
enced characteristics over time with the concept of velocity density. The idea of
velocity density is that of measuring the rate of change of data concentration at
a given spatial location over a user-defined time horizon. Our assumption is that
the destination which is spatially close to the current one and which minimizes
the rate of change in profile is the most probable next destination.



3 ITiS (Intelligent Tourism information System)

The applicative task we address is that of suggesting the next destination of
a tourist which moves on a map given: (1) a spatial referencing system that
permits to uniquely define a spatial position on the map (e.g., latitude and
longitude); (2) the set of destinations, each of which has a spatial position with
respect to the spatial referencing system and geo-references a set of textual
documents; (3) the current tourist position with respect to the spatial referencing
system; (4) the trajectory already followed by the tourist and its associated
profile which is updated on the basis of the semantic information extracted from
textual documents consulted by the tourist over a user-defined time horizon.

ITiS addresses the suggestion task by updating the tourist profile each time
the tourist visits a new site. The profile update operations take into account three
basic assumptions. First, a tourist is not asked to consult documents before the
visit starts, but documents geo-referenced at a site can be consulted only when
the tourist is visiting the site itself and the profile is updated according to the new
set of consulted documents. Second, a tourist consults a document if document
content is interesting for him/her. Third, the content of documents recently
consulted is more interesting for the tourist than that of documents consulted
in the past. Based on the tourist profile, a time-slice density estimation is then
used to suggest the preferential next destination of the tourist.

Before presenting how the suggestion is performed, we introduce some pre-
liminary definitions, describe how to extract the semantic information from the
consulted textual documents in order to update the profile, how to use the time-
slice density estimation in order to suggest next destination.

3.1 Preliminary Concepts

Let P = {pi = 〈xpi
, ypi

〉|i = 1 . . . n} be the set of candidate destinations on
a map towards a tourist can move, such that xpi

and ypi
represent the spatial

coordinates of pi and n is the cardinality of P . Let D = {dj |j = 1 . . . , N} be a
set of textual documents. One or more documents in D are geo-referenced to a
destination pi according to the function δ : P → 2D such that δ(pi) = {dj ∈ D|dj

is geo-referenced to pi}. The function δ is not injective, that is, the same textual
document can be geo-referenced to two or more destinations.

Given U be the set of tourists, it is also possible to define the set of visits of
the tourist uj ∈ U , that is, the movement history of the tourist, as:

vuj
(t) =

(

〈pj1 , t
′
j1
, t′′j1 , Dj1〉, . . . , 〈pjs

, t′js
, t′′js

, Djs
〉
)

(1)

where pjk
∈ P represents the k-th (k = 1, . . . , s) destination the tourist uj

visited, Djk
⊆ δ(pjk

) represents the set of consulted documents geo-referenced
to pjk

and [t′jk
, t′′jk

] represents the time interval (starting time and ending time)
of the k-th visit such that t′jk

≤ t′′jk
and:

{

t′′jk
≤ t′jk+1

iff k ≤ s− 1

t′′jk
≤ t iff k = s



The set of consulted documents at the time t by the tourist uj is defined
as dconsulted(vuj

(t)) =
⋃

k=1...sDjk
. Analogously, the set of documents which

are still not consulted at the time t is defined as: dnotConsulted(vuj
(t)) = D −

dconsulted(vuj
(t)). The set of visited destinations at the time t by the tourist uj is

defined as pvisited(vuj
(t)) =

⋃

k=1...s{pjk
}. The set of destinations which are still

not visited at the time t is defined as pnotV isited(vuj
(t)) = P − pvisited(vuj

(t)).

3.2 Document Representation

A document is pre-processed in order to remove stopwords, such as articles, ad-
verbs, prepositions and other frequent words and determine equivalent stems
(stemming) by means of Porter’s algorithm for English texts [15]. Pre-processed
documents are subsequently represented by means of a feature set which is de-
termined on the basis of some statistics whose formalization is reported below.

Let C be a set of documents, with C ⊆ D, and w be a token of a stemmed
(non-stop) word which occurs in a document of D, it is possible to define:

– TFd(w) as the relative frequency of w in a document d ∈ D (Term Fre-

quency),
– TFC(w) = maxd∈CTFd(w) the maximum value of TFd(w),

– DFC(w) = |{d∈C| w occurs in d}|
|C| the percentage of documents in C in which

w occurs (Document Frequency),
– CFC′,C′′,...C(s)(w) is the number of sets of documents where the token w

occurs. In this formulation, sets of documents are denoted as C′, C′′, . . . C(s)

with C(i) ⊆ D (Category Frequency).

Then the following measure [5] permits to associate a token wi with its score
vi and to select relevant tokens for the representation of documents in D:

vi =
TFdconsulted(vuj

(t))(wi) ×
(

DFdconsulted(vuj
(t))(wi)

)2

CFdconsulted(vuj
(t)),dnotConsulted(vuj

(t))(wi)
(2)

Tokens in dconsulted(vuj
(t) that minimize vi (maxTF×DF 2×ICF criterion1) are

penalized since they are used in both dconsulted(vuj
(t)) and dnotConsulted(vuj

(t))
and do not permit to discriminate between the two sets. Differently, tokens that
maximize vi can reasonably represent documents in D. The best ndict tokens
form the dictionary Dict(vuj

(t)) of the tourist uj at the time t.
Once Dict(vuj

(t)) is determined, it is used to index the N documents in D
according to the normalized TF×idf measure [17]. In the matrix representation:

ω(vuj
(t)) =









ω1,1 ω1,2 . . .
...

. . . . . .
...

... ωN,ndict









(3)

1 ICF stands for Inverse Category Frequency



where the TF×idf measure is computed as ωp,q =
TFdp (wq)×ln N

1+N×DFD(wq)

‖ω(vuj
(t))‖1

with

dp ∈ D and wq ∈ Dict(vuj
(t)). It is noteworthy that ωp,q ∈ [0, 1].

3.3 Time-Slice Density Based Profile

We define the profile of the tourist uj at the time t as the triple 〈xuj
(t), yuj

(t),
X(vuj

(t))〉, where (xuj
(t), yuj

(t)) represents the geographical position of the
tourist, while X(vuj

(t)) represents the semantic position of the tourist over the
space [0, 1]ndict . Since it would be computationally impractical to represent and
search this continuous space, ITiS uses a discrete version of the same space. The
discrete space is defined by resorting to a discretization of the interval [0, 1] ac-
cording to a supervised discretization function ψ : [0, 1] → Φ, where Φ is a finite
set of values whose cardinality β is apriori defined by the user. This way, the
continuous space [0, 1]ndict is mapped into a discrete space Φndict . In ITiS, ψ is
based on the equal-width discretization algorithm [6] that associates x with its
nearest value in Φ = {0, 1

β
, 2

β
, . . . , β−1

β
, 1}.

The semantic position X(vuj
(t)) is computed by a forward time-slice den-

sity estimator F (X, t, ht, uj) that is obtained by adapting the forward density
estimator presented in [1] to our scenario. Formally,

X(vuj
(t)) = argmax

X∈Φndict

F (X, t, ht, uj) (4)

where the density function F (X, t, ht, uj), that is measured for all possible se-
mantic positions X ∈ Φndict of the tourist uj at the time t, is maximized. The
value of density at a given semantic position X is forward estimated on the
basis of the sequence S of time-stamped textual documents which belong to
dconsulted(vuj

(t)) and have been consulted during the visits of the tourist in
the time slice [t − ht, t]. Formally, S is defined as: S = 〈d1, t1〉, . . . , 〈d|S|, t|S|〉,
where ∀〈di, ti〉 ∈ S, ∃〈pjk

, t′jk
, t′′jk

, Djk
〉 ∈ vuj

(t) such that: i) di ∈ Djk
, ii)

t′jk
≤ ti ≤ t′′jk

and iii) t− ht ≤ ti ≤ t.
A kernel density estimation is used to provide us a continuous estimate of the

density F (X, t, ht, uj) as sum of smoothed values of kernel functionsKht,uj
(X, t).

F (X, t, ht, uj) = CF ×
∑

〈di,ti〉∈S

Kht,uj
(X − ωdi

, t− ti) (5)

In this Eq., ωdi
= [ωdi,1, . . . , ωdi,ndict

] is the vector representation of the docu-
ment di ∈ D (see Eq. 3), CF is a constant that makes

∑

X∈Φndict F (X, t, ht, uj) =
1 and Kht,uj

(X − ωdi
, t− ti) is a semantic-temporal kernel function that uses a

time fading factor to give more importance to recently consulted documents:

Kht,uj
(∆X,∆t) =

(

1 −
∆t

ht

)

K ′(∆X) (6)

Specifically, K ′(∆X) =
∏ndict

q=1
1√

2πσ2
e

∆X2
q

2σ2 is the product of ndict identical

Gaussian kernel functions, with σ is a user defined smoothing parameter.



3.4 Preferential Next Destination Suggestion

In order to suggest the preferential next destination, ITiS assumes that a tourist
moves towards a site spatially close to her/his current position and is not inter-
ested to visit that same site more than once. According to these assumptions,
the set of candidate next destinations is defined as:

Pr(vuj
(t)) = {p ∈ pnotV isited(vuj

(t))|EuclideanDistance(p, (xuj
(t), yuj

(t))) ≤ r}
(7)

where r is the maximum spatial distance that the tourist is willing to cover.

Among the candidate destinations in Pr(vuj
(t)), ITiS suggests the tourist to

move toward the destination which geo-references the set of documents whose
consultation will lead to minimize her/his profile drift, that is:

pnext(vuj
(t)) = argmin

p∈Pr(vuj
(t))

drift(X(vuj
(t)) , 〈p, t, t, δ(p)〉) (8)

If several destinations minimize the drift measure, then ITiS suggests all of
them ordered according to the Euclidean distance from the current geographical
position of the tourist.

Function drift(·, ·) in Eq. 8 permit to rank destinations in order of preference.
It can be computed by resorting to three alternative ways, that is:

– by computing the cosine similarity between the semantic position of the
tourist profile (see Eq. (4)) at the time t and the set of textual documents
δ(p) which are geo-referenced to the candidate next destination p;

– by measuring the variation of the semantic position of the tourist profile (see
Eq. (4)) due to the simulation of a visit to the candidate next destination;

– by measuring the variation of the density function of the tourist (see Eq.
(5)) due to the simulation of a visit to the candidate next destination.

By computing the cosine similarity, drift(·, ·) is obtained as:

drift(X(vuj
(t)), 〈p, t, t, δ(p)〉) =

1

|δ(p)|
·

∑

d∈δ(p)

X(vuj
(t)) · ωd

‖X(vuj
(t))‖‖ωd‖

(9)

Alternatively, by measuring the variation of the semantic position of the
tourist profile due the visit, drift(·, ·) is obtained as:

drift(X(vuj
(t)), 〈p, t, t, δ(p)〉) = ‖X(vuj

(t)) −X(vuj
(t), 〈p, t, t, δ(p)〉)‖2 (10)

Finally, by measuring the variation of the density function of the tourist due
to the simulation of a visit to the candidate next destination, drift(·, ·) is:

drift( X(vuj
(t)), 〈p, t, t, δ(p)〉) =

F (X(vuj
(t)), t, ht, uj) − F ((X(vuj

(t), 〈p, t, t, δ(p)〉), t, ht, uj)
(11)



4 Experiments

In this Section we present two applications where we use ITiS to suggest the
next destination of a tourist on the basis of the time-slide density estimation of
her/his semantic-base profile. We consider two touristic areas, that is, Stockport
(United Kingdom) and Paris (France).

Due to difficulty in obtaining real data, we asked sixteen users to perform
virtual thematic tours over either Stockport or Paris. The basic hypothesis is
that the tourist has a Java enabled mobile device with GPS and remotely access
geo-referenced textual documents stored in the server. Documents stored on the
server have been selected by a tourism expert.

In the experiments, ITiS is run with the following parameter values: ndict = 5,
σ = 0.5, β = 20, 30. Additionally, ht is appropriately set in order to temporally
consider, for each tourist, the entire set of stored visits. r is set to 3 Kms in
Stockport experiment and it is set to 32 Kms in Paris experiment. This choice of r
permits to consider all sites in the corresponding maps as candidate destinations
to be suggested. As to σ, if it is chosen too small then spurious fine structure
becomes visible, while if σ is too large then the bimodal nature of the distribution
is obscured. As to ndict, it is mainly related to the number of different themes a
tourist can be interested in (we have only 8-9 categories, see Tables 1 and 5).

To evaluate how much a suggested destination p matches the interest of the
tourist u, we compute the following score:

score(u, p) =

{

1 if u accepts to move toward p
0 otherwise.

(12)

By considering that pnext(vuj
(t)) (see Eq. 8) may suggest a set of (equivalent)

destinations, denoted as Pnext, then:

score(u, Pnext) =
∑

pi∈Pnext

score(u, pi)/|Pnext| (13)

4.1 Stockport

Stockport is a large town in Greater Manchester and, in this study, we consider
eight tourists who visited Stockport by moving from one site to another. We
consider thirty candidate destination sites which, for descriptive purposes, are
classified into eight categories, namely, transport net, monument and museum,
park, restaurant and hotel, school and university, shopping, sport and entertain-
ment and church (see Table 1). Each site has a geographic position (latitude and
longitude) over the map of Stockport (see Figure 1) and it geo-references a set of
textual documents (including Wikipedia pages) which are descriptive of the site
attractiveness. In all, we consider a total of sixty-four textual documents. Addi-
tionally, we have tracked the moving trajectory and the consulted documents of
the tourists. A brief description of tourists’ trajectories is reported in Table 2.

The destinations suggested by ITiS by considering either the cosine drift or
the semantic drift or the density drift are reported in Table 3 for β = 20 and



Fig. 1. A trajectory in Stockport

in Table 4 for β = 30. The score shows that the cosine drift measure gener-
ally outperforms both the semantic drift measure and the density drift measure.
In particular, the semantic drift measure often leads to suggest additional non-
interesting destinations which result in decreasing the score value. Anyway, we
observe that increasing β (from 20 to 30) semantic drift measure generally re-
duces the number of suggested destinations. This is mainly due to the fact that
semantic drift measure is affected by the discretization function more than the
cosine drift measure. Differently, we observe that the cosine drift measure and
the density drift measure are not very sensitive to β.

4.2 Paris Dataset

In this experiment, we consider fifty-one candidate destinations located over the
map of Paris. Destinations are classified into seven categories, namely, transport
net, monument, museum, park, school and university, sport and entertainment
and church (see Table 5). In all, we consider ninety-two textual documents and
results are collected on eight tourists.

The destinations suggested by ITiS are reported in Tables 7-8. By analyzing
the average score, we observe a significant improvement with respect to the
results obtained with Stockport data. This is motivated by the fact that in
this experiment, tourists followed trajectories where it is possible to recognize
well defined thematic interests of the tourist (e.g., a thematic interest for the
impressionist art). This depends on the fact that Paris offers a wide spectrum of
touristic attractions which may match distinct thematic interests of a possible
tourist. By comparing the score obtained with the drift measures, we observe that
results confirm the main considerations drawn from the analysis of Stockport
data (i.e., cosine drift measure outperforms both semantic drift measure and
density drift measure). Also in this experiment, score results do not appear to
be very sensitive to the β value.



Site Category

Hazel Grove Rail Station, Bramhall Rail Sta-
tion, Rose Hill Marple Rail Station, Stock-
port Rail Station, Bredbury Rail Station

TRANSPORT NET

The Co-Op Bank Pyramid, Wellington Mill,
Stockport Viaduct, Staircase House, Stock-
port Town Hall, Air Raid Shelters Museum

MONUMENT AND MUSEUM

Vernon Park PARK

The Bowling Green, Duke Of York, The Hare
& Hounds, The Romper Inn, Bredbury Hall
Hotel

RESTAURANT AND HOTEL

Stockport College (Town Centre), Stockport
College (Heaton Moore)

SCHOOL AND UNIVERSITY

TK Maxx, Merseyway, Debenhams, John
Lewis Cheadle

SHOPPING

Stockport Plaza, Bramhall Park Golf Club SPORT AND ENTERTAINMENT

Unitarian Church, Salvation Army Church,
Salvation Army Church (Chesire), St. Barn-
abas Parish Church, St. Elizabeth Church

CHURCH

Table 1. Candidate destinations description for Stockport data.

5 Conclusion

In this paper, we have presented a forward time-slice density estimation that
is tailored for suggesting the next destination where a tourist reasonably would
move towards. The forward time-slice density estimation approach is used to
measure the drift of the tourist’s interests by taking into account the current
geographical position of the tourist and the thematic history of her/his visited
sites over a user-defined time horizon. For each visited site, we consider the set of
textual documents geo-referenced to the site that the tourist has consulted during
the visit time. Results on two datasets show both effectiveness and accuracy of
the proposed approach. By comparing destinations suggested by three distinct
measures, that is, cosine drift, semantic drift and density drift, we have observed
that cosine drift measure outperforms other measures.

As future work, we would extend experiments by considering a higher number
of thematic tourist trajectories, although data privacy and novelty of the consid-
ered application scenario make difficult to obtain a large base of touristic data.
Additionally, we also intend to take into account constraints in the suggestion
step. This way, for example, the system can avoid to suggest specific destinations
during closing times or out of the available budget. Finally, we intend to perform
new experiments by using a spatio-temporal kernel function.
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Tourist Visited sites No. of consulted docs

T1 Stockport Rail Station 4

T2 Salvation Army Church 1

T3 Salvation Army Church 1
Salvation Army Chesire 1
St. Elizabeth Church 3
Unitarian Church 2

T4 The Bowling Green 1
Duke Of York 2
The Hare & Hounds 2

T5 The Co-Op Bank Pyramid 1
Stockport Viaduct 2
The Hare & Hounds 1
Vernon Park 1
Stockport Plaza 3

T6 Wellington Mill 2
Staircase House 3

T7 TK Maxx 2
Merseyway 2
Debenhams 1

T8 Stockport Plaza 2
Stockport College (Town Centre) 1
John Lewis Cheadle 1

Table 2. A description of both the tourist trajectories and the corresponding number
of consulted documents in Stockport data.
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Tourist Next Destination Suggestion

CosineDrift Score SemanticDrift Score DensityDrift Score

T1 Rose Hill Marple
Station

1 Rose Hill Marple
Station

1 Bramhall Rail Sta-
tion

1

T2 Salvation Army
Church (Chesire)

1 Salvation Army
Church (Chesire)

1 St. Elizabeth
Church

1

T3 St. Barnabas
Parish Church

1 more than one 1/3 Stockport Town
Hall

0

T4 The Romper Inn 1 more than one 3/5 The Romper Inn 1

T5 Stockport College
(Town Centre)

0 more than one 1/7 Bredbury Hall Ho-
tel

0

T6 Vernon Park 1 more than one 1/4 St. Elizabeth
Church

0

T7 John Lewis Chea-
dle

1 John Lewis Chea-
dle

1 John Lewis Chea-
dle

1

T8 Stockport Town
Hall

0 Salvation Army
Church

0 Vernon Park 1

Avg. 0.75 0.54 0.625

Table 3. Score computed over the destinations suggested by ITiS for the Stockport
data (β = 20).
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Flach, and M. J. Zaki, editors, KDD, pages 637–646. ACM, 2009.

14. M. Morzy. Mining frequent trajectories of moving objects for location prediction.
In P. Perner, editor, MLDM, volume 4571 of Lecture Notes in Computer Science,
pages 667–680. Springer, 2007.

15. M. F. Porter. An algorithm for suffix stripping. pages 313–316, 1997.
16. J. R. B. Ritchie and G. I. Crouch. The competitive destination : a sustainable

tourism perspective. CABI, Oxon, UK, 2003.
17. F. Sebastiani. Machine learning in automated text categorization. ACM Computing

Surveys, 34(1):1–47, 2002.
18. J. Yang and M. Hu. Trajpattern: Mining sequential patterns from imprecise tra-

jectories of mobile objects. In Y. I. et al., editor, EDBT, volume 3896 of Lecture

Notes in Computer Science, pages 664–681. Springer, 2006.
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Tourist Next Destination Suggestion

CosineDrift Score SemanticDrift Score DensityDrift Score

T1 Bredbury Rail
Station

1 Bredbury Rail
Station

1 Bredbury Rail
Station

1

T2 Salvation Army
Church (Chesire)

1 Salvation Army
Church (Chesire)

1 Salvation Army
Church (Chesire)

1

T3 St. Barnabas
Parish Church

1 more than one 1/3 Vernon Park 0

T4 The Romper Inn 1 The Romper Inn 1 The Romper Inn 1

T5 Stockport College
(Town Centre)

0 Bramhall Rail Sta-
tion

0 Bredbury Hall Ho-
tel

0

T6 Vernon Park 1 Bredbury Rail
Station

0 St. Elizabeth
Church

0

T7 John Lewis Chea-
dle

1 John Lewis Chea-
dle

1 John Lewis Chea-
dle

1

T8 Stockport Town
Hall

0 Bredbury Rail
Station

0 The Hare &
Hounds

0

Avg. 0.75 0.54 0.5

Table 4. Score computed over the destinations suggested by ITiS for the Stockport
data (β = 30).

Site Category

Gare de Lyon, Gare de l’Est TRANSPORT NET

Palais-Royal, Place Vendôme, Conciergerie, Place des
Victoires, Place des Vosges, Luxembourg Palace, Tour
Eiffel, Place de la Concorde, Arc de Triomphe de
l’Étoile, Église de la Madeleine, l’Opéra National de
Paris, Place de la Bastille, Palais de l’Elysée, la défense,
Montmartre, Avenue des Champs-Élysées’

MONUMENT

Musée Louvre, Musée National Picasso, Centre Pom-
pidou, Musée Cluny, Musee Hôtel National des In-
valides, Musée Orsay, Musée Rodin, Musée de Or-
angerie, Musée Jacquemart-André, Grévin, Musée des
Gobelins, Musée de La Poste, Musée dArt Moderne de
la Ville de Paris, Musée Marmottan Monet, Fragonard
Musee du Parfum, Musée de Les Égouts de Paris

MUSEUM

Bois de Boulogne, Parc des Buttes Chaumont, La Vil-
lette, Canal Saint-Martin

PARK

Sorbonne SCHOOL AND UNI-
VERSITY

Aquarium du trocadero, EuroDisney, Park Asterix,
Moulin Rouge, Hard Rock café, Folies Bergère

SPORT AND ENTER-
TAINMENT

Basilique du Sacre Coeur, Sainte Chapelle, Saint Eu-
stache, Notre Dame, Saint Marrie, Le Panthéon, Saint
Étienne du Mont

CHURCH

Table 5. Description of the candidate destinations in the Paris data.



Tourist Trajectory Visited sites No. of

consulted

docs

T1 Traditional itinerary Tour Eiffel - Champs Elisée - Arc de Tri-
omphe de l’Étoile - Place de la concorde -
Louvre - Notre dame

9

T2 Museum itinerary Musée du Louvre - Musée Orsay - Musée
National Picasso - Musée Orangerie -
Musée Jacquemart-André - Centre Pom-
pidou

8

T3 Church itinerary Notre Dame - Sacre Cour - Pantheon -
Madleine

8

T4 Impressionism
itinerary

Monmatre - Musée Orsay - Musée Or-
angerie - Musée Monet

6

T5 Historical itinerary Arc de Triomphe de l’Étoile - Place de la
Bastille - Place de la Concorde - Concerg-
erie - Place vendome - Place de josges -
Egouts de Paris

16

T6 Historical-political
itinerary

Palais Royal - Luxembourg Palace - Palais
de l’Elysée - La défense - Sorbonné - Musée
National des Invalides - Place Vendome

14

T7 Entertainment
itinerary

Champs élisée - Acquarium du Trocadero
- Musée du Parfum -
Folies Bergére - Disneyland - Moulin
Rouge - Park Asterix -
Hard Rock Café

12

T8 Nature itinerary Canal SaintMartine - Parc des Buttes
Chaumont - Bois de Boulogne - LaVillette

8

Table 6. A description of the tourist trajectories and the corresponding number of
consulted documents in Paris data.

Tourist Next Destination Suggestion

CosineDrift Score SemanticDrift Score DensityDrift Score

T1 Musée Orsay 1 more than one 2/9 Musée Orsay 1

T2 Musée de La Poste 1 more than one 3/3 Musée de Les
Égouts de Paris

1

T3 Monmatre 1 more than one 3/11 Sainte Chapelle 1

T4 Musée Rodin 1 more than one 2/3 Musée
Jacquemart-
André

1

T5 Champs Elisée 1 more than one 2/3 Aquarium du tro-
cadero

0

T6 Park Asterix 0 more than one 9/13 Monmatre 1

T7 Musée de La Poste 1 more than one 4/4 Gare de l’Est 0

T8 Park Asterix 1 EuroDisney 1 EuroDisney 1

Avg. 0.87 0.69 0.75

Table 7. Score computed over the destinations suggested by ITiS for the Paris data
(β = 20).



Tourist Next Destination Suggestion

CosineDrift Score SemanticDrift Score DensityDrift Score

T1 Musée Orsay 1 Musée Orsay 1 Musée Orsay 1

T2 Grévin 1 more than one 3/3 Musée de Les
Égouts de Paris

1

T3 Saint Étienne du
Mont

1 more than one 2/5 Sainte Chapelle 1

T4 Musée Rodin 1 more than one 2/3 Musée
Jacquemart-
André

1

T5 Champs Elisée 1 Musée de La Poste 1 Aquarium du tro-
cadero

0

T6 Park Asterix 0 Place de la Bastille 1 Monmatre 1

T7 Musée
Jacquemart-
André

0 more than one 1/2 Gare de l’Est 0

T8 Park Asterix 1 Luxembourg
Palace

0 EuroDisney 1

Avg. 0.75 0.70 0.75

Table 8. Score computed over the destinations suggested by ITiS for the Paris data
(β = 30).


