
World Wide Web
https://doi.org/10.1007/s11280-020-00839-2

Closed sequential pattern mining for sitemap
generation

Michelangelo Ceci1,2 ·Pasqua Fabiana Lanotte1

Received: 24 July 2019 / Revised: 22 July 2020 / Accepted: 31 August 2020 /

© The Author(s) 2020

Abstract
A sitemap represents an explicit specification of the design concept and knowledge organi-
zation of a website and is therefore considered as the website’s basic ontology. It not only
presents the main usage flows for users, but also hierarchically organizes concepts of the
website. Typically, sitemaps are defined by webmasters in the very early stages of the web-
site design. However, during their life websites significantly change their structure, their
content and their possible navigation paths. Even if this is not the case, webmasters can fail
to either define sitemaps that reflect the actual website content or, vice versa, to define the
actual organization of pages and links which do not reflect the intended organization of the
content coded in the sitemaps. In this paper we propose an approach which automatically
generates sitemaps. Contrary to other approaches proposed in the literature, which mainly
generate sitemaps from the textual content of the pages, in this work sitemaps are gener-
ated by analyzing the Web graph of a website. This allows us to: i) automatically generate a
sitemap on the basis of possible navigation paths, ii) compare the generated sitemaps with
either the sitemap provided by the Web designer or with the intended sitemap of the web-
site and, consequently, iii) plan possible website re-organization. The solution we propose
is based on closed frequent sequence extraction and only concentrates on hyperlinks orga-
nized in “Web lists”, which are logical lists embedded in the pages. These “Web lists” are
typically used for supporting users in Web site navigation and they include menus, navbars
and content tables. Experiments performed on three real datasets show that the extracted
sitemaps are much more similar to those defined by website curators than those obtained by
competitor algorithms.

Keywords Automatic extraction of sitemaps · Sequential pattern mining · Web page
hierarchies · Closed patterns · Website structure mining · Data extraction and integration

� Michelangelo Ceci
michelangelo.ceci@uniba.it

1 Department of Computer Science, University of Bari Aldo Moro, Bari, Italy
2 Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-020-00839-2&domain=pdf
http://orcid.org/0000-0002-6690-7583
mailto: michelangelo.ceci@uniba.it

World Wide Web

1 Introduction

One of the main problems in Web mining concerns the automatic construction of Web page
hierarchies, typically called sitemaps. A sitemap represents an explicit specification of the
design concept codified by User Experience Designers and Information Architects, to define
the knowledge organization of a website through grouping of related content [34]. This
hierarchical organization of the content is coherent with the approach typically followed in
the website navigation, where users start with the homepage or a Web page found through
a search engine or linked from another website. They then use the navigation systems1

provided by the website to find the desired information [7].
Sitemaps help users by: i) increasing the user experience of a website and ii) providing

a complementary tool for the keyword-based search in the information retrieval process. In
the first case, sitemaps organize the website content in a top-down fashion, from a more
general page to a detailed page, help users to have, at a glance, contextual information
such as relationships among Web pages (e.g. relationships of super/sub category), facilitate
the discovery of and the access to information and create a better sense of orientation. In
the second case, sitemaps help users when they do not know what they are looking for
until the available options are presented or their information needs cannot be formulated in
keywords [24, 35]. In fact, in the keyword-based paradigm, the search engine, given one or
several key terms, returns an ordered list of Web pages in descending order of relevance and
accuracy. However, users have to express their information needs in the form of keyword
sequences, which should be as discriminative as possible. For example, a sitemap can be
useful in a university website to identify all the professors or all the research areas. This
kind of query is hard to answer by a search engine, but very simple to extract from a well
designed sitemap.

Moreover, sitemaps help search engine bots to extract the information asset of an orga-
nization, as it is available on its website, without accessing the underlying organization’s
databases. For example, given an organization website, it is possible to discover all its affil-
iate companies, products, employees, etc. A sitemap can also be used to improve existing
applications like search engines by integrating taxonomies in the presentation of search
results [18], or to cluster Web pages having the same semantic type (e.g. Web pages related
to professors, courses, books, lists of publications of a single researcher) [26]. Additional
applications include the extraction and integration of the semi-structured Web [41], the
usage of the semantics inherent in sitemaps to learn ontologies [2], the detection of Web
bots by exploiting sitemaps [29], the implementation of intelligent crawlers for archiving
news websites [39], contribution-based Web page ranking [20] and automatic creation of
digital libraries [16].

The sitemap construction is not a simple process, especially for websites with a large
content and with wide, deep logical hierarchies. Before the introduction of the Google
Sitemap Protocol (2005) sitemaps were typically manually generated. However, as web-
sites become bigger, it became also difficult to manually keep the sitemap updated (e.g. by
inserting and/or removing pages or adding new sections in the website), as well as to list all
the pages and contents in community-building tools like forums, blogs and message boards.
This means that manually generated sitemaps do not describe the correct, current structure
of the website, soon becoming useless and confusing for users. Moreover, search engines

1A navigation system is a common set of hyperlinks implemented using a similar layout, which assist users
during website navigation (e.g. navbars, menus, product lists, etc.) [5].

World Wide Web

cannot keep track of all this material, skipping information as they crawl through changing
websites. To solve this issue several automatic tools have been proposed on the Web.2 These
services generate an XML sitemap, used by search bots, which enumerate a flat list of urls
and do not output the hierarchical structure of websites.

Automatic generation of (hierarchical) sitemaps solves this problem, helping both the
Web designer to track evolutions in the website hierarchy and users to have constantly
updated views of the content of the website. Moreover, analyzing the Web log files and
comparing them with the real sitemap of a website, makes it possible to understand if users
browse the website in ways that are different from the designer’s expectations and view the
website link structure differently from the designer [3].

The existing works that face the problem of the automatic extraction or generation of
sitemaps (also called hierarchies or taxonomies) are usually based on the analysis of text,
hyperlinks, urls structure, heuristics or a combination thereof [27, 28, 40, 45]. The most
prominent works, however, are mainly based on the textual content of the Web pages. This
approach, although it proves effective in the generation of reasonable sitemaps, turns out to
be ineffective in at least two cases: i) when there is not enough information in the text of
a page; ii) when Web pages have different content, but actually refer to the same semantic
class. The former case refers to Web pages with little textual information, such as pages rich
in structural data (e.g. pages from Deep Web Databases) or multimedia data, or when Web
pages have several script terms, which can be easily found also in other pages (e.g. pages
from a CMS website). The latter case refers to Web pages having the same semantic type
but characterized by a different distribution of terms. In this case, it is hard to organize Web
pages of the same type in the same branch of the sitemap. For example, let us consider a
website of an university department. Sitemaps generated on the basis of the textual content
can organize the Web page of a professor as a child of its research area Web page, rather
than as a child of the professors Web page. In this way Web pages considered as siblings
in the hierarchy by Web masters are spread into several parts of the extracted hierarchy (i.e.
different research areas).

This paper is a contribution in the direction of extracting sitemaps automatically by com-
bining information on the Web page structure and hyperlink structure of websites. This goal
is achieved by analyzing Web page HTML formatting (i.e. HTML tags and visual informa-
tion rendered by a Web browser) to extract from each page collections of links, called Web
lists, a compact and noise-free representation of the website’s graph. Then, the extracted
hyperlink structure is used to study the reachability properties in the website graph.

In order to consider reachability, the solution we propose exploits the random walk theory
and the concept of frequent sequences of Web pages in random walks. The basic idea is
based on the “distributional hypothesis”, initially defined for words in natural language
processing (i.e. “You shall know a word by the company it keeps”) [8] and recently extended
to generic objects [15]. In our context, we transpose this idea in “You shall know a Web
page by the paths it keeps”. According to this hypothesis, two Web pages are siblings in
the hierarchy if they share the same most frequent path from the homepage in the website
graph. In order to encode and identify “frequent paths from the homepage in the website
graph”, we resort to the data mining task of sequential pattern mining, which is a data mining
task specialized for analyzing sequences of items, to discover sequential patterns. More
precisely, it consists of efficiently discovering frequent subsequences in a set of sequences
where, in our case, items represent Web pages and sequences represent paths in the website

2http://slickplan.com/, http://www.screamingfrog.co.uk, https://www.xml-sitemaps.com/

http://slickplan.com/
http://www.screamingfrog.co.uk
https://www.xml-sitemaps.com/

World Wide Web

graph. Additionally, in order to reduce time-complexity problems of the task of sequential
pattern mining and reduce the presence of redundant patterns, the approach we follow is that
of extracting closed sequential patterns, instead of extracting classical frequent sequential
patterns. An additional reason for this choice is that in closed sequential pattern mining
only closed patterns are discovered, allowing us to prefer shorter paths to longer paths when
longer paths do not add much information. The immediate effect is to prefer the generation
of shallow sitemaps to deep sitemaps.

To better explain this aspect, let us consider a website where a is the homepage, b is
a webpage reachable from a, and c is a webpage reachable from b. If we consider that,
by definition, a sequential pattern α is closed if it has no proper supersequence β with the
same support, the idea is to prefer the sequence α = 〈a, b〉 (or the sequence γ = 〈a, c〉)
to the sequence β = 〈a, b, c〉, if α (or γ) has the same support of β. In fact a long path in
the sitemap is (i.e., deep sitemaps are) only necessary if it (they) really provide additional
information, but in this case all the paths that reach b from a, also reach c (after b).

The algorithm we propose, named SMAP (SiteMAP miner), implements a four-step strat-
egy that: 1. generates the Web graph using Web-lists, 2. extracts sequences which represent
navigation paths by exploiting the random walk theory, 3. mines frequent closed sequen-
tial patterns of navigation paths and 4. transforms discovered patterns in order to extract the
sitemap in the form of a hierarchy. As previously mentioned, contrary to other approaches
for sitemap generation that use the hyperlink structure, SMAP uses also the Web page struc-
ture (i.e. Web lists), which allows us to concentrate on a subset of links which describe
the website’s navigational systems. Moreover, SMAP uses the concept of frequent paths to
provide statistical support to the structure of the generated sitemap.

This paper presents an extended and revised version of the workshop paper presented in
[23], which is a proof-of-concept for the four-step strategy implemented in SMAP. How-
ever, every single step has been revised from a methodological viewpoint. The main changes
are: i) the extraction of navigation paths has been modified by considering not only nor-
mal closed sequential patterns, but also contiguous closed sequential patterns [30]. ii) the
pruning strategy has been revised and integrated in the mining step, while in [23] it was
implemented as a post-processing step. These changes have led to different results, so, in
this paper, we have reported a comprehensive and more detailed empirical evaluation, also
adding a complete comparison with state-of-the-art methods (not present in [23]). Finally,
related works have been discussed in depth and analyzed.

The rest of the paper is organized as follows. In Section 2 we briefly discuss existing
related work. In Section 3, we formally define the problem and introduce the necessary
definitions. In Section 4 we introduce and describe our method for sitemap extraction.
In Section 5 we describe the experimental setting, present the obtained results and com-
ment on them. Finally, in Section 6 we draw some conclusions and outline possible future
work.

2 Related work

To the best of our knowledge there is no work in the literature that uses sequential pattern
mining for the automated extraction of sitemaps. This work, however, was motivated by
research reported in the literature on sitemap extraction, application of sequential pattern
mining algorithms in the context of Web mining and automatic extraction of Web lists. In
the following, we discuss related work in these three research fields.

World Wide Web

2.1 Sitemap extraction

The problem of generating website hierarchies is part of the more general research topic
of Web mining. Although extracting website sitemaps is an important task for many Web
applications, few studies specifically focus on this problem. In the following we revise some
related works from the Web mining research area, even though they are not directly related
to the specific task of sitemap generation. We classify them on the basis of the input data
they use.

The first category includes Web Content Mining algorithms which take as input a collec-
tion of textual documents. Hierarchies obtained by these methods, which typically simply
perform hierarchical clustering, represent the topical organization of Web pages (see [1]
for a survey). However, most of the existing techniques assume that Web pages share con-
sistent writing styles, provide enough contextual information, are plain and completely
unstructured and are independent and identically distributed. The problem with hierarchy
induction only based on text is that words often have multiple meanings and for hetero-
geneous websites it is difficult to disambiguate words and construct the proper taxonomy.
This is especially true for Web pages which have little textual information or Web pages
written in a collaborative manner which therefore have different distribution of terms.
Differently from traditional textual documents, Web pages are characterized by structural
features, such as hyperlinks or an HTML structure which provide different, complementary
information.

The second category includes Web Structure Mining algorithms which take as input a
graph where nodes represent Web pages and edges represent hyperlinks. Here, researchers
and practitioners have used the hyperlink structure to organize Web pages for many years.
The basic idea of Web structure mining algorithms is that if there is a hyperlink between two
pages, then some semantic relation may exist between them [5, 22, 27]. A Web structure
mining naı̈ve solution for sitemap generation is the application of the simple breadth search
algorithm. In the breadth search, starting from the homepage, links can be traversed level-
wise and each webpage is put into a conceptual level of the sitemap the first time it is
encountered. In this way, the hierarchy represents the shortest path from the homepage to
each page. The problem with this method is that the shortest path from the homepage to a
page does not necessarily match super/sub category relationships among pages in the path.
This is due to the presence of short-cut links, which connect Web pages belonging to deeper
levels of the hierarchy at shallow levels.

A more sophisticated approach is presented in [27], where the authors present a system
based on the HITS algorithm for the automatic generation of hierarchical sitemaps from
websites. The idea is to split Web pages into blocks and identify those with high frequency
and hub value which describe the sitemap. In this case, the accuracy of the method strongly
depends on the task of block extraction. In fact, the algorithm requires blocks to have the
same structure on the Web pages. This assumption holds for blocks which are part of the
navigation system in the Web pages which are firstly accessed by the user and typically rep-
resent the main content of the Web site. However, it is not true for more specific pages and
pages at deeper levels of the website. In fact, many websites change the layout of secondary
menus in deeper Web pages, to provide users with a sense of progression through the web-
site. For this type of website, the proposed algorithm may fail to properly identify nodes of
the sitemaps which correspond to pages at deeper levels of the Web site. Another drawback
is due to the possible presence of false positive blocks that are included because they are
recurrent, albeit not belonging to the navigation system (e.g., advertisements).

World Wide Web

In [19] the authors focus on the problem of extracting structured data such as menus
from Web pages, in order to identify the main hierarchical structure and the boundaries of
a website. This is done by analyzing cliques among pages in the Web graph. As in [27],
the algorithm segments Web pages of a given website into blocks and identifies the blocks
that compose the maximal cliques as the main menus of the website. Although the method
is unsupervised and thus suitable for the analysis of heterogeneous websites, it may suffer
from the same limitations as [27] when processing deeper levels of the website.

Other state-of-the-art algorithms combine the hyperlink structure with content informa-
tion of Web pages to extract the hierarchical organization of a website. In [45] a classifier
is learned to extract topic-hierarchies, using several features such as URL structure, con-
tent and navigation features, information about anchors, text and heuristics. Although the
method is simple and the results seem to be accurate enough, labeling examples requires
a lot of effort. Therefore, the solution is not directly applicable in huge, heterogeneous
websites. In the same line of research, [40] proposes a method (HDTM) that extracts
document-topic hierarchies from websites. This method combines information from text
and hyperlinks by alternating two steps: 1) Random walk with restart from the home-
page with the assignment of an initial multinomial distribution to each node (i.e., page);
2) Update of the multinomial distribution when the walker reaches a node. These steps are
performed using the Gibbs sampling algorithm and several thousand Gibbs-iterations are
usually required before a hierarchy emerges. The resulting hierarchy is obtained by select-
ing, for each node, the most probable parent, in the way that higher nodes in the hierarchy
contain more general terms, and lower nodes in the hierarchy contain more specific terms.
Although this method is similar to ours in its purpose, it does not exploit web-lists and
constructs document-topic hierarchies in a buttom-up fashion. In the experiments we will
compare our method and HDTM.

2.2 Sequential patternmining for Webmining

Our work is also connected with some works in the field of Web Usage Mining, when the
goal is to apply sequential pattern mining algorithms for identifying patterns in Web log
files. Such patterns describe how users navigate in the website [4, 30]. In general, Web
usage mining algorithms, which extract hierarchies based on user behavior analyze two
different types of patterns: sequential patterns and contiguous sequential patterns [30].
Sequential patterns are sequences of items that frequently occur in a sufficiently large pro-
portion of transactions, while contiguous sequential patterns are a special form of sequential
patterns, in which the items appearing in the sequence must be adjacent, with respect to the
underlying ordering followed by the users during navigation.

In [32] the authors compare models based on sequential patterns and contiguous sequen-
tial patterns for predicting the next page that the user will reach. They claim that models
based on contiguous sequences perform better on websites with a deeper structure and
longer paths, while prediction models, based on sequential patterns, are better suited for per-
sonalization in websites with a higher degree of connectivity and shorter navigation depth
(i.e., shallow hierarchies). However, to the best of our knowledge, there is no study that ana-
lyzes these models in the context of sitemap generation, via hyperlink analysis. In any case,
algorithms for the generation of Web page hierarchies, based on users’ behavior, cannot be
directly applied to sitemap generation, because they typically create multiple hierarchies
(i.e., the hierarchies depend on the user profile) and only consider Web pages having a
user-specified number of visitors.

World Wide Web

Independently of the related work that use sequential pattern mining in Web mining,
one of the main topics covered by this paper is that of mining closed sequential patterns. If
compared with the more common problem of sequential pattern mining, closed sequential
pattern mining approaches avoid the generation of unnecessary sub-sequences, thus lead-
ing to more compact results and saving computational time and space costs [9, 11]. In the
literature, there are many methods for mining closed sequential patters, the most promi-
nent ones are: CloSpan [44], BIDE [38], ClaSP [14] and COBRA [17]. However, all these
methods follow the same enumeration strategy: patterns are generated on the basis of the
lexicographic ordering and this ordering is then used both in item extension and in sequence
extension. However, in general, this pattern-growth strategy may present two drawbacks:
redundant itemset extension and expensive “matching cost” in the generation of projected
databases.

For this reason, we adapt [11] in SMAP, in order to extract a sitemap in terms of closed
sequences of Web pages rooted in the homepage, by taking as input the website hyperlink
graph structure, as well as the structural and visual information of Web pages.

Recently, high-utility pattern mining [10, 12] has been used as an alternative to closed
sequential pattern mining to reduce number of the extracted patterns by focusing on implicit
or potential information. The main advantage of high-utility sequential patterns is that they
give the opportunity to leverage factors such as the utility, interest, risk, and profit of items
[13]. Although these factors can also be important for the task at hand, it would be necessary
to define a-priori some factors for the items we consider (Web pages) and for the sequences
they generate. This process, however, requires domain knowledge and can be subjective.
Instead, in this paper, we follow a frequency-based approach to extract closed sequential
patterns of interest and we postpone the application of high-utility sequential patterns for
future research.

2.3 Automatic extraction of Web lists

As claimed in [5], not all the links are equally important to describe the website struc-
ture. Several works in the field of Web mining exploit Web pages taking advantage of
the structural and visual information embedded in the HTML tags. In [5, 22, 26] col-
lections of hyperlinks having similar visual and/or structural properties are used to filter
noisy links and collect Web pages belonging to same semantic type. In [5, 26] the aim is
to exploit Web lists for the task of Web page clustering. Specifically, in [5] the authors
rely on the layout properties of link collections available in the pages (they use the set
of paths between the root of the page and the HTML tags < a > to characterize the
structure) to find structurally-similar Web pages. Moreover, in [26] the authors propose
a similarity measure obtained combining textual similarity, co-citation and bibliography-
coupling similarity and in-page link-structure similarity. In this way, two Web pages have a
similar in-page link-structure if they frequently appear together in link collections. Differ-
ently, in [22] the authors define the concept of logical Web lists (i.e. Web lists that collect
structured data spanned in multiple pages of the same website) for information extraction
purposes.

We follow this basic idea and use visual and/or structural properties for the identification
of the most promising nodes for sitemap extraction. The aim is to codify, in this way, the
navigation systems of a website and, accordingly, reduce the search space during sitemap
extraction.

World Wide Web

3 Extraction of sitemaps: useful definitions

Before describing the methodology we propose for the extraction of sitemaps, we provide
some important definitions. Such definitions characterize the structure of Web pages and
the hyperlink structure of Web sites.

A Web page is characterized by multiple modalities. They can be associated to what they
represent: a textual representation (i.e.., textual content), a visual representation (i.e., Web
page rendering) and a structural representation (i.e., HTML organization). The method we
propose takes into account both the visual and the structural representations. Therefore, in
the following, we provide definitions which formally identify both representations.

Definition 1 A Web page is characterized by its Structural Representation which consists
of Web elements present in the HTML code and organized according to a tree structure.
HTML tags refer to text, hyperlinks and multimedia data, to give them different meaning
and rendering in the Web page.

Definition 2 Web Page Visual representation. Let us consider a Web page rendered by a
Web browser according to the CSS2 visual formatting model [25], which represents the Web
page elements as rectangular boxes characterized by their position and geometry. Then, by
taking into account these properties and the spatial relationships they define (e.g., next to,
inside) it is possible to create a tree, called Rendered Box Tree. In a rendered box tree, by
associating the Web page with a coordinate system whose origin is at the top-left corner,
the spatial position of each Web page element is fully determined by the tuple (x, y, h,w),
where (x, y) are the coordinates of the top-left corner of its corresponding box (i.e. the posi-
tion of the box in the rendered page), and (h,w) are the box’s height and width respectively
(i.e. the size of the box in the rendered page). Therefore, the Visual Representation of a
Web page is given by its Rendered Box Tree.

The Rendered Box Tree can be generated by any Web browser which follows W3C
specifications for rendering [25]. Moreover, the Rendered Box Tree could have a completely
different structure from that of the corresponding HTML tag tree. This is because i) a Web
page can be enriched with invisible elements (like the <head> tag or elements that have
display:none; set) and ii) the generation of the Rendered Box Tree requires the execution of
javascript and css code.

Example 1 Figure 1c and d show an example of the structural and visual representations for
the homepage of a Computer Science Department website.

Leaves of the structural tree and leaves of the Rendered Block Tree represent the min-
imum semantic units that cannot be segmented further (e.g., images, plain texts, links).
Actually, the Rendered Block Tree is more complicated than that shown in Figure 1d (there
are often hundreds or even thousands of blocks in a Rendered Block Tree).

Both Definition 1 and Definition 2, which are used to exploit the Web page structure, are
used in the formal definition of Web lists, which is crucial for our approach:

Definition 3 A Web List is a set of several Web elements (called data records), such that:

i) Their rendered boxes have a similar HTML structure.

World Wide Web

(a) The Stanford Computer Science homepage (b) Box Structure

(c) Structural Representation (d) Rendered Box Tree

Figure 1 The Stanford Computer Science homepage: Web page (a), Box Structure (b), Structural represen
tation (c) and Rendered Box Tree (d). Each Web list is represented with a different color in (b) and (d)

ii) They are visually adjacent and aligned. This alignment can occur via the x-axis (i.e. a
vertical list), the y-axis (i.e. horizontal list), or in a tiled manner (i.e. aligned vertically
and horizontally) [22].

This definition requires an algorithm which checks whether the two rendered boxes
“have a similar HTML structure”. Moreover, it also requires a formal definition of alignment
and adjacency. These aspects are discussed in Section 4.

In Figure 1b we show an example of a Computer Science Department website. From the
illustrated page, one horizontal Web list (box A) and three vertical Web lists (boxes B, C,
D) can be extracted.

Another important source of information used in our approach is the hyperlink structure
of the website, which is formally introduced by the following definition:

Definition 4 Let V be the set of Web pages of a Web site, h ∈ V be the homepage and E be
the set of directed hyperlinks between two Web pages, then a Website is formally defined
as a directed graph G = (V ,E, h).

World Wide Web

The homepage h of a website is an important component of a website since it represents
the entry point and allows the website to be seen as a rooted directed graph.

Example 2 Figure 2a show an example of a Web graph, where nodes are Web pages and
edges are hyperlinks.

As previously mentioned, the algorithm we propose exploits a sequential pattern mining
step. The basic idea is to consider a navigation path in a website as a sequence of urls (links)
and use sequences of such urls to identify frequent navigation paths. Formally, a sequence
is defined as follows:

Definition 5 Sequence: Let G = (V ,E, h) be a website, then a sequence S is defined
as S = 〈t1, t2, . . . , tm〉, where each item tj ∈ V denotes the j -th Web page found in the
navigation path S.

A sequence S = 〈t1, t2, . . . , tm〉 is a sub-sequence of a sequence S′ = 〈a1, a2, . . . , an〉,
if and only if integers i1, i2, . . . , im exist, such that 1 ≤ i1 < i2 < · · · < im ≤ n and
t1 = ai1, t2 = ai2, . . . tm = aim. Moreover, S sub-sequence of S′ is equivalent to say that S′
is a super-sequence of S and that S′ contains S.

Example 3 The sequence S′ = 〈a, b, d〉 is a super-sequence of S = 〈a, d〉. On the contrary,
S′ is not a super-sequence of S′′ = 〈e〉, since e is not equal to any Web page of S′.

Given a database of sequences SDB and a single sequence S, the absolute support of
S in SDB is the number of sequences in SDB which contain S, while its relative support
σ(S) (or, simply “support”) is the absolute support divided by the size of the database (i.e.,
|SDB|). Formally:

σ(S) = |{t ∈ SDB : Sis a sub-sequence of t}|
|SDB| (1)

A sequence is frequent when its support is higher than a user-defined threshold. In our work
the support defines the relationship strength among the Web pages.

Figure 2 a Web Graph rooted at h; b Sequence Database (SDB), that is, a set of tuples (SID, Sequence),
where SID is a sequence-id and Sequence is a random walk with restart from the homepage; c VIL for the
sequence α = 〈h, b〉

World Wide Web

Example 4 Figure 2b shows an example of a database of sequences SDB. In this database
the sequence S = 〈h, b〉 has relative support σ(S) = 0.83.

Following the suggestion provided in [30], we also exploit the definition of Contiguous
Sequence which is formally defined as follows:

Definition 6 Contiguous Sequence: Given a sequence S = 〈t1, t2, . . . , tm〉 created from
G = (V ,E), S is contiguous if each item ti appears in G contiguously to item ti−1 (i.e.
there is an edge between ti−1 and ti).

Example 5 Given the Web graph of Figure 2a, a contiguous sequence is 〈h, b, d〉, while a
normal sequence is 〈h, d〉.

The task of sequential pattern mining corresponds to the task of extracting frequent (sub-
)sequences (non-contiguous or contiguous) from SDB. This is considered challenging from
a time complexity view point because algorithms have to generate and test a combinatorially
explosive number of intermediate sub-sequences. Moreover, in sequential pattern mining,
most of the extracted sequences are very similar to others and highly redundant. For these
two reasons, we concentrate on the problem of extracting closed sequential patterns, instead
of extracting frequent sequential patterns. This task is less computationally demanding and
reduces the problem of redundancy in the extracted patterns.

A closed sequential pattern (or simply a closed sequence) is defined as follows:

Definition 7 Closed Sequence: A sequential pattern Sj (either contiguous or not) is closed
if and only if it is frequent and its support is different from that of all its frequent super-
sequences.

Example 6 Figure 2b shows an example of a database of sequences. Sequence 〈h〉 is closed
because no super-sequences of 〈h〉 with the same support exist. On the contrary, sequence
〈h, d〉 is not closed because the super-sequence 〈h, b, d〉 has the same support as 〈h, d〉.

The last definition we have to provide before discussing the technical details of the
method is that of the sitemap. This definition is particularly important since it implicitly
defines the goal of the proposed method.

Definition 8 Sitemap: Given a Web graph G = (V ,E) where h ∈ V is the homepage, a
user-defined threshold t and a weight function w : E → R, then T = arg maxTi

�(Ti) is
a sitemap if:

1. Ti = (V ′
i , E

′
i) is a tree rooted in h, where V ′

i ⊆ V and E′
i ⊆ E;

2. �(Ti) = ∑
e∈E′

i
w(e);

3. ∀ e = (j1, j2) ∈ E′
i , j2 ∈ webList (j1), that is, the url of the Web page j2 is contained

in a Web list of the Web page j1 (See Definition 3);
4. ∀e ∈ E′

i , w(e) ≥ t .

The meaning of w(·) and the way the tree T is generated remain unspecified in this
(general) definition. These aspects are intentionally kept as parameters in Definition 8, in
order to emphasize the general applicability of the framework. We only anticipate that our
solution does not need to generate all the possible trees Ti ⊆ G to optimize �(·), but it is
able to extract T directly, by analyzing a sub-graph of the website.

World Wide Web

4 Methodology

The problem we consider is extracting the website’s sitemap, according to Definition 8. To
achieve this goal, we combine different techniques which have their roots in Web mining
and data mining research areas: i) Information extraction for identifying potential navigation
systems in Web pages in the form of web-lists; ii) The Random Walk theory to extract
navigation paths; iii) Sequential pattern mining for finding the most frequent paths which
describe the hierarchical structure of the website.

In the first step of the proposed methodology we perform website crawling. Crawling
uses structural and visual Web page information to extract Web lists in order to mitigate
problems deriving from useless, noisy links. The output of this phase is the website graph
G, where each node represents a single page and the edges represent the hyperlinks. In the
second phase we generate sequences of urls (i.e., Web pages) which describe navigation
paths. This is done by exploiting random walks extracted from the crawled website graph.
In the third phase we mine closed frequent sequences of urls (i.e., closed frequent navigation
paths) in the form of a tree. Unfortunately, this step does not consist in the simple application
of any (closed) sequential pattern mining algorithm, since it is necessary to generate a tree
of Web pages (which represents the sequences) with specific characteristics: the root is the
homepage, any Web page appears only once and it is not possible to have multiple paths
that connect the homepage with a Web page.

4.1 Website crawling

As claimed in [5], not all links are equally important to describe the website structure. In
fact, a website is rich in useless, noisy links, which may not be relevant for the sitemap
extraction process. This is the case of hyperlinks used to enforce the Web page authority
in a link-based ranking scenario, short-cut hyperlinks, etc. The solution we propose, based
on the usage of Web lists, has a twofold effect: on the one hand, it guarantees that only
hyperlinks which may belong to potential navigation systems are considered; on the other
hand, it allows the method to identify hyperlinks by implicitly taking into account the Web
page structure codified in the Web lists available in the Web pages [5, 22, 37, 42], even if
the hyperlinks do not belong to the navigation system.

The crawling algorithm is described in Algorithm 1. In particular, starting from the home-
page h, the method extractWebLists() is iteratively applied to extract url collections having
the same domain as h and organized in Web lists. Only urls (i.e. Web pages) included in
Web lists are further explored (line 6). The output of the website crawling step is the graph
G = (V ,E) which will be used in the next step. To avoid a Web page being crawled multiple
times, a frontier stores the set of Web pages already analyzed.

The method extractWebLists() extracts Web lists according to Definition 3, where, how-
ever, some concepts have to be instantiated. The first concept is related to the analysis of
the HTML structure. Specifically, to check whether two Web elements ei, ej have a similar
HTML structure, we first convert each HTML tag into a unique character. Then, we codify
the converted HTML tree, having as its root the Web element ei (ej), into a string com-
posed of the converted HTML tags, ordered by applying a breadth search to the rooted tree.
Finally, we apply to the generated strings the Normalized Edit Distance, which is the cost
associated with the minimum set of operations (in terms of inserting, deleting and updating),
needed to transform one string into another string [47].

World Wide Web

Algorithm 1 crawlingWebsite(homepage)

Input: URL homepage;
Output: Set<(URL, URL)> E; Set<URL> V;

1: urlsAnalyzed = Set()
2: frontier = Queue(homepage)
3: repeat
4: currentPage = frontier. dequeue();
5: V. add(currentPage);
6: webLists = extractWebLists(currentPage) . filterSameDomain(homepage);
7: for each list ∈ webLists do
8: pagesToAnalyze = list. toSet() - urlsAnalyzed;
9: frontier. enqueue(pagesToAnalyze);

10: urlsAnalyzed. add(pagesToAnalyze);
11: for each u ∈ pagesToAnalyze do
12: E. add((currentPage, u));
13: end for
14: end for
15: until !frontier.empty() return (V, E)

Other concepts to be instantiated in extractWebLists() are adjacency and alignment. Two
Web elements ei, ej are adjacent if they are siblings in the Rendered Box Tree and there is
no Web element ew , different from ei and ej , which is rendered between them. Finally, two
Web elements ei, ej are aligned on: i) the x-axis if they have the same x coordinate, that is,
ei .x = ej .x; ii) the y-axis if they share the same y value, that is, ei .y = ej .y; iii) both axes
when ei .x = ej .x and ei .y = ej .y.

Algorithm 2 describes in detail the Web list extraction process: the algorithm analyzes all
the nodes which, in the Rendered Box Tree, are children of the rectangular box representing
the body tag element. For each node to be analyzed (line 5), the algorithm tries to align its
children (lines 9-30), only if the number of children is relatively small. Otherwise, it only
enqueues the children for further processing. The rationale is that only small subtrees of the
Rendered Box Tree can represent weblists, whereas subtrees, rooted at the higher levels of
the Rendered Box Tree, typically do not represent any structured data. In our experiments,
the threshold value used for the size of the tree (maxSize) is 30. This value guarantees that
navigation systems are considered for the alignment. Only the nodes which are included
neither in verticalLists nor in horizontalLists are further explored by the algorithm (lines
27-28). The method getStructurallySimilar() checks whether the elements in a list have a
similar HTML structure.

4.2 Sequence database generation

To capture and codify correlations among graph nodes (i.e. Web pages) we use the Random
Walk with Restart from Homepage (RWRH) approach. It can be considered a particular
case of Random Walk with Restart, obtained by setting a single node (i.e. the homepage)
as the starting point. Random Walk with Restart is widely adopted in several works to infer
structural properties of nodes in a graph, through the analysis of the global structure of the
whole network [46].

World Wide Web

Algorithm 2 extractWebLists(webpage)

Input: URL webpage;
Output: List<List<URL>> W; //list of weblists.

1: body = webpage. findElementByTagName(”body”);
2: notAligned = body. getChildren();
3: repeat
4: node = notAligned. dequeue();
5: children = node. getChildren();
6: if node.getSize() >= maxSize then
7: notAligned. enqueue(children);
8: else
9: verticalAligned= children.groupByX();

10: horizontalAligned = children.groupByY();
11: lists = List();
12: for each L ∈ verticalAligned do
13: structurallySimilar = getStructurallySimilar(L);
14: if structurallySimilar.getSize() ≥ 2 then
15: lists.add(structurallySimilar);
16: end if
17: end for
18: for each L ∈ horizontalAligned do
19: structurallySimilar = getStructurallySimilar(L);
20: if structurallySimilar.getSize() ≥ 2 then
21: lists.add(structurallySimilar);
22: end if
23: end for
24: for each L ∈ lists do
25: W.add(L. getUrls())
26: end for
27: notIncluded = children - lists.getWebElements();
28: notAligned. enqueue(notIncluded);
29: end if
30: until !notAligned.empty() return W

Using this approach it is more likely that the Web pages closer to the homepage will
be reached than those at deeper levels. This is coherent with the organization typically fol-
lowed in the website navigation where navigation systems closer to the homepage belong to
shallower levels of the website hierarchy. In addition, with this approach we also guarantee
the likelihood that Web pages that are easily accessible from the home page will be reached
through shortcuts or multiple paths.

Formally, given the Web graph G extracted by means of the website crawling step and
two numbers rwrLength, dbLength ∈ N, random walks are used to navigate the Web
graph G from the homepage h (which is one of the nodes of G). The output of this step is a
database of sequences SDB composed of dbLength random walks with maximum length
rwrLength and starting from h.

As observed in [36], if we increase the length rwrLength of a random walk starting at
node i, the probability of reaching a node j tends to depend on the degree of j . The effect

World Wide Web

of this property is that with long random walks it is easy to reach “hubs”, which might mean
moving from one community to another (i.e., from one part of the Web site to another, in
our case). The same authors also observed that, on the contrary, if we reduce the length
rwrLength, the random walks tend to become “trapped” in densely connected parts of the
graph corresponding to communities, without necessarily reaching hubs. In our approach
we exploit this property and generate short random walks so that the random walks become
“trapped” in densely connected pages of the website. The aim is to avoid inferring false
correlations among Web pages due to the nodes’ degree.

Algorithm 3 describes the generation process of the sequence database or, equivalently,
the set of navigation paths. Figure 2b shows a sequence database obtained from the Web
graph in Figure 2a. The generation process is exemplified in the following example:

Example 7 Let us consider the Web graph in Figure 2a. Here, each node is a Web page
and there exists an edge between two nodes ti and tj if and only if the Web page ti has
an outlink to the Web page tj . Therefore, starting from the homepage h, a random walker
can reach in one hop the nodes (i.e. Web pages) h, b, c or e. Suppose it randomly chooses
the node b, then the partial sequence 〈h, b〉 is generated at the first step. At the second
step, starting from the node b, the random walker can reach the nodes d, e or f . Suppose
the node f is chosen, generating the partial sequence 〈h, b, f 〉 and then, according to the
same procedure, generating the sequence 〈h, b, f, e〉. The random walker can then decide
to restart, making the sequence 〈h, b, f, e〉 a “final” sequence to be added to the sequence
database. After restart, the random walker can generate, for instance, the second sequence,
that is, the sequence 〈h, b, d, b〉 in Figure 2b. The process can then iterate and generate all
the sequences in the figure.

Algorithm 3 rwrGeneration(rwrLength, dbLength, G, α)

Input: int rwrLength, int dbLength, Graph G, float α;
Output: List<List<URL>> randomWalks;

1: for each i ∈ Range(0, dbLength) do
2: w = List()
3: w[0] = G.homepage
4: for each j ∈ Range(1, rwrLength) do
5: λ = Math.random()
6: if λ > α then
7: w[j] = G. getRandomOutlink(w[j-1]);
8: else
9: w[j] = w[0]

10: end if
11: end for
12: randomWalks. add(w);
13: end forreturn randomWalks

4.3 Mining sitemaps

Given the sequence database (SDB), extracted according to the procedure described in
Section 4.2, and a user-defined threshold t (i.e. minimum support), we exploit a closed
sequential pattern mining algorithm to extract all the frequent sequences to be used for

World Wide Web

sitemap generation. In this phase we use a revised version of CloFAST [11] as the closed
sequential pattern mining algorithm. We chose CloFAST because it provides compact
results, while saving computational time and space, if compared with other closed sequential
pattern mining algorithms.

Another reason for using CloFAST is that it is able to extract closed sequential patterns.
In our context, if a path h → c → f has the same support as h → c → f → e, probably
e should be included in the sitemap because it has, at least, the same importance as f . On
the other hand, ignoring the sequence h → c → f does not affect sitemap construction
since h → c → f → e is still kept. Moreover, mining closed sequential patterns is a less
demanding task than mining (frequent) sequential patters, since mining closed sequential
patterns can lead to a reduction of the search space.

In its original version CloFAST returns a tree TCloFAST = (V ′, E′) and a weight function
σ : E′ → R. In TCloFAST each node v ∈ V ′ has a label and σ associates each node v ∈ V ′
with the relative support of the sequence 〈t1, t2, . . . , tm〉 such that ti is a label associated to
the i-th node found in the path between the root and v (t1 is the label associated to the root
of TCloFAST and tm is the label associated to the node v).

In our modified version of CloFAST labels represent urls. Moreover, the way CloFAST
generates sequential patterns has been modified, in order to take into account additional
constraints.

– The first constraint does not allow the generation of frequent sequences which start
from a node that is not the homepage;

– The second constraint (optional) ensures that frequent paths, that do not exist in the
crawled graph G, are removed (see Definition 6, Contiguous sequence.);

– The third constraint prevents two nodes in the tree TCloFAST being labeled with the
same label.

The reason for the first constraint is quite intuitive (sitemaps start from the homepage),
while the second and third constraints require additional motivations. The second constraint
is necessary in order to compare the sitemaps extracted by considering sequential patterns
with those extracted by considering contiguous sequential patterns. In its original version,
CloFAST is not able to extract contiguous sequential patterns. Concerning the third con-
straint, we have to note that the tree TCloFAST , extracted with the application of the original
version of CloFAST, may contain multiple frequent paths that reach, from the homepage,
a given Web page (node label). For example, in Figure 2a the Web page e can be reached
using the paths h → c → e and h → c → f → e, and both can be frequent. However, in
the sitemap each Web page can be reached by only one path starting from the homepage.

Example 8 Figure 3a and c show trees extracted by CloFAST, where constraints 1,3 and
1,2,3 are satisfied, respectively. In both cases the trees have been extracted from the SDB in
Figure 2b.

Before discussing the way constraint checking is implemented, we have to describe one
of the main data structures that CloFAST uses: the Vertical id-List (VIL). VILs are used by
CloFAST for support counting and for extracting frequent sequences. In the following we
give a brief definition of a VIL:

Definition 9 (Vertical Id-list) Let SDB be a sequence database of size n (i.e. |SDB| = n),
Sj ∈ SDB its j-th sequence (j ∈ {1, 2, . . . , n}) and α a sequence associated to a node

World Wide Web

Figure 3 a A frequent sequence tree extracted by CloFAST with absolute minsup = 3 from the SDB in
Figure 2b. Nodes with dashed borders represent non-closed nodes; b A frequent sequence tree extracted by
the extended version of CloFAST, having the support as its weight function; c A contiguous sequence tree
extracted by the extended version of CloFAST, having the contiguous support as its weight function

of the tree, its vertical id-list, denoted as V ILα , is a vector of size n, such that for each
j = 1, . . . , n

V ILα[j] =
{ [posα,1, posα,2, . . . , posα,m] if Sj contains α

null otherwise

where posα,i is the end position of the i-th occurrence (i ≤ m) of α in Sj .

Example 9 Figure 2c shows the V IL of sequence α = 〈h, b〉. The values in V ILα repre-
sent the end position of the occurrences of sequence α in the sequences of Figure 2b. For
instance, the first element (list “[2]”) represents the position of the first occurrence of Web
page b, after Web page h, in the first sequence (SID = 1). The second element (list “[2,4]”)
represents the positions of b after h in the sequence S2. The other values are respectively
the list with only value 3 (for sequence S3), the list with only value 2 (for S4), NULL for
S5 and the list with only value 3 (for S6)

The checking of the first constraint is implemented, in the new version of CloFAST,
by working on VILs. Specifically, the VILs are constructed level-wise (for sequences of
increasing length). In order to avoid the generation of patterns, whose first element is dif-
ferent from the homepage, firstly we generate one single VIL, that is, the one associated

World Wide Web

with the sequence 〈h〉. Other VILs (for other sequences of length 1) are simply not gener-
ated. This sequence is the only one which is further extended in the subsequent steps of the
algorithm.

VILs are also used to check the second constraint. In particular, starting from the root of
TCloFAST , the function contiguous(·) (see Algorithm 4) is iteratively applied to update the
node VILs. This function looks for possible “holes” in the sequences by bottom-up climbing
the sequence tree TCloFAST . A hole is found when the condition at line 10 is not satisfied.
The returned VIL of a node u is used to calculate its (absolute) contiguous support, without
scanning the sequence database SDB: σc(u) = |{j |vil = contiguous(u, TCloFAST) ∧
vil[j][1] = h}|. Therefore, if the contiguous support of u, σc(u) is greater than the threshold
t , the node is kept, otherwise it is pruned. Note that pruning is possible because of the non-
monotonic behaviour of the contiguous support with respect to the length of the sequences.
Moreover, this approach does not require sequence database scanning.

As for the third constraint, since in the sitemap each Web page can be reached by only
one path starting from the homepage, we have to select, for each Web page included in the
frequent sequence tree (or contiguous sequence tree), the best path to reach it. Formally, a
node u ∈ TCloFAST (u ∈ T ′

CloFAST for contiguous sequences) is pruned if ∃v ∈ TCloFAST

(∃v ∈ T ′
CloFAST for contiguous sequences), such that u = v, l(u) = l(v) and σ(u) < σ(v)

(σc(u) < σc(v) for contiguous sequences), with l(u) being the label associated with node u.
In this way, we implicitly instantiate the function w(a), introduced in Definition 8, as

the maximum support (or contiguous support) of sequences in TCloFAST which represent
navigation paths from the homepage to a.

4.4 Time and space complexity

The time complexity of the website crawling stage is O(|G| ∗ num lists ∗ num urls),
where |G| is the number of Web pages belonging to a website, num lists is the number of
extracted weblists for each Web page, and num urls is the number of urls in a Web list. As
for the sequence database generation phase, we have O(rwrLength ∗ dbLength), where
rwrLength is the length of a random walk and dbLength is the number of random walks.

However, the main source of complexity comes from the sequential pattern mining task,
which is known to be exponential in the depth of the trees [31] which, in our case is bounded
by rwrLength (which is a relatively small number). More specifically it is, in the worst
case, linear in the number of nodes of the frequent sequence tree and linear in dbLength,
where the number of nodes of the frequent sequence tree can be exponential in the depth
of the trees. However, we have to clarify that the time complexity of sequential pattern
mining algorithms depends on the number of patterns in the search space (and thus, on
the value of the minimum support threshold), and the cost of the operations for generating
and processing each itemset. In this respect, CloFAST implements an efficient algorithm
to prune the search space in the extraction of closed sequential patterns, which is O(d ·
dbLength), where d is the depth of the tree [11]. Finally, the algorithm used to extract
contiguous patterns only works on VILs, already generated by CloFAST to identify closed
patterns. Therefore, searching of contiguous patterns, does not requires additional effort.
This makes the added time complexity the same as the pruning in CloFAST, that is, O(d ·
dbLength), with the advantage of further reducing the search space.

As for the space complexity, the required space to store the sequence database is
O(rwrLength ∗ dbLength). Moreover, the space required to run the sequential pattern
mining task is due to the size of the trees and the size and number of the VILs. This last
aspect is prevalent and makes the space complexity linear in the number of nodes of the

World Wide Web

Algorithm 4 contiguous(T,u)

Input: T : a sequence tree extracted by CloFAST; u: node of T

Output: vil: the VIL of the sequence at node u such that the contiguous condition is
satisfied.

1: vil = getVil(u);
2: parent = getParent(u);
3: repeat
4: parentVil = getVil(parent);
5: for all j = 1 . . . length(vil); do
6: i=0; contiguous = FALSE;
7: repeat
8: z=0;
9: repeat

10: if vil[j][i] = parentVil[j][z]+1 then
11: vil[j] = parentVil[j][z..(len(parentVil[j])-1)];
12: contiguous = T RUE ;
13: end if
14: until + + z ≤ i AND !contiguous
15: if !contiguous then
16: vil[j] = NULL

17: end if
18: until + + i < len(vil[j]) AND !contiguous
19: end for
20: u = parent
21: parent = getParent(u);
22: until parent != root(T) return vil;

frequent sequence tree and linear in dbLength. The main problem is that the number of
nodes of the frequent sequence tree can be exponential in the depth of the trees but, as
already pointed out, in our case the depth of the trees is bounded by rwrLength.

5 Experiments and discussion

The method described in this paper has been implemented in the system SMAP and, in this
section, we present the results of its empirical evaluation. We first investigate the influence
of the threshold t . Next, we focus on the influence of the number and length of random
walks. Then, we compare the contribution of using (non-contiguous) closed sequential
patterns with the contribution of using contiguous closed sequential patterns. Finally, we
compare SMAP with some state-of-the-art methods and one baseline method.

5.1 Datasets

The evaluation of SMAP is mainly based on the quality of sitemaps extracted. This, how-
ever, is not trivial task because, to the best of our knowledge, there is no dataset publicly
available for the specific task of sitemap extraction. Therefore, we considered two possible
solutions: i) involving human experts to extract the hierarchical organization of websites

World Wide Web

and generating a ground-truth dataset for each considered website; ii) using, as ground-
truth, existing and real sitemap pages, which are manually generated by Web masters and
available for some websites.

Obviously, the first solution would have required extensive human effort and working
time. This problem becomes more evident if we consider websites with a great number of
strongly connected Web pages and websites with deep hierarchies.

In the second case, sitemap pages are in general manually created by Web designers.
However, the risk is that sitemap pages are not updated (i.e. they can contain links to non-
existent pages or they ignore the existence of new sections) or are very abstract (i.e. contain
shallow hierarchies composed of few pages). For this reason, to empirically evaluate SMAP,
we performed experiments on the following websites which provide updated sitemap pages:
www.cs.illinois.edu, www.cs.ox.ac.uk, and www.cs.princeton.edu.

The main characteristics of the three datasets are reported in Table 1. As it can be seen,
they vary significantly in the number of Web pages, degree of connection and degree of
connection in Web lists.

5.2 Experimental setting

The evaluation was performed in terms of Precision, Recall and F-measure of edges. In
particular, Precision measures how many of the extracted edges belong to the real sitemap.
Recall measures how many edges, belonging to the real sitemap are extracted. We also
include results in terms of F-Measure, the weighted harmonic mean of Precision and Recall.
The results refer to the first two levels of the sitemaps, that is level 1 and level 2, while level
0 represents the root. Additional levels are hard to evaluate and, in most cases, do not exist
in real sitemaps.

To investigate whether the observed differences in performance among the methods are
statistically significant, we follow the recommendations outlined by Demšar [6]. Specif-
ically, we use the non-parametric Wilcoxon paired signed rank test [43] to compare the
predictive performance of two methods over multiple datasets. On the other hand, for com-
parison of multiple methods, we use the corrected Friedman test and the post-hoc Nemenyi
test [33]. We present the result from the Nemenyi post-hoc test on an average rank diagram.
The ranks are depicted on an axis, so that the best ranking algorithms are at the right-most
side of the diagram. The algorithms that do not differ significantly (in performance) are
connected with a line. In all the experiments reported in this study the significance level is
set to 0.05.

The results are compared with those obtained by HDTM [40]. For HDTM, we set γ =
0.25 (to avoid hierarchies too shallow or too deep) and 5,000 Gibbs iterations, as suggested
by the authors in their paper.

We also compare SMAP with an algorithm (called MST) which, starting from graph G

(the same as that built in SMAP), generates as a sitemap a maximum spanning tree. The

Table 1 Datasets description

Website No. of No. of No. of hyperlinks No. of edges

Web pages hyperlinks in Web lists in (real) sitemaps

www.cs.illinois.edu 563 9415 5330 54

www.cs.ox.ac.uk 3480 44526 35148 40

www.cs.princeton.edu 3132 122493 104585 44

www.cs.illinois.edu
www.cs.ox.ac.uk
www.cs.princeton.edu
www.cs.illinois.edu
www.cs.ox.ac.uk
www.cs.princeton.edu

World Wide Web

maximum spanning tree is created, as for SMAP, by using random walks. In particular,
graph G is used to generate a new weighted graph G′, where nodes and edges are the same
as G, whereas the weight associated to each edge represents the number of walks that cross
that edge. G′ is then used to generate sitemaps using any maximum spanning tree extraction
algorithm (in our implementation we used the Kruskal’s Algorithm [21]). Since SMAP
and MST share many steps, the purpose of the comparison is to “isolate” and evaluate the
contribution provided by the revised version of CloFAST in the identification of sitemaps.

5.3 Results: influence of parameters

The three main parameters (i.e., t : minimum support, rwrLength: size of random walks,
dbLength: number of generated random walks) were compared by focusing on the fol-
lowing possible values: t = {0.0001, 0.0005, 0.001, 0.005}, rwrLength = {5, 7, 10} and
dbLength = {100K, 500K, 1M}. The experiments were run according to a “grid search”,
where each combination of parameter values were tested and the results are shown by
aggregating them (in terms of average) on a single parameter.

Table 2 Evaluation of SMAP by varying the minimum (contiguous) support threshold

Website t- minSupp Precision @1 Recall@1 F@1 no. edges@1

www.cs.illinois.edu 0.0001 1 0.63 0.77 19

www.cs.illinois.edu 0.0005 1 0.63 0.77 19

www.cs.illinois.edu 0.001 1 0.63 0.77 19

www.cs.illinois.edu 0.005 1 0.63 0.77 19

www.cs.ox.ac.uk 0.0001 1 0.35 0.52 23

www.cs.ox.ac.uk 0.0005 1 0.35 0.52 23

www.cs.ox.ac.uk 0.001 1 0.35 0.52 23

www.cs.ox.ac.uk 0.005 1 0.35 0.52 23

www.cs.princeton.edu 0.0001 1 0.19 0.32 31

www.cs.princeton.edu 0.0005 1 0.19 0.32 31

www.cs.princeton.edu 0.001 1 0.19 0.32 31

www.cs.princeton.edu 0.005 1 0.19 0.32 31

Website t- minSupp Precision @2 Recall@2 F@2 no. edges@2

www.cs.illinois.edu 0.0001 0.90 0.31 0.46 123

www.cs.illinois.edu 0.0005 0.90 0.31 0.46 122

www.cs.illinois.edu 0.001 0.90 0.61 0.69 83.5

www.cs.illinois.edu 0.005 0.48 0.93 0.47 22

www.cs.ox.ac.uk 0.0001 0.59 0.17 0.26 112

www.cs.ox.ac.uk 0.0005 0.60 0.17 0.265 112

www.cs.ox.ac.uk 0.001 0.60 0.19 0.28 103

www.cs.ox.ac.uk 0.005 0.37 0.68 0.32 32

www.cs.princeton.edu 0.0001 0.88 0.17 0.28 198

www.cs.princeton.edu 0.0005 0.89 0.21 0.34 161

www.cs.princeton.edu 0.001 0.87 0.33 0.47 119

www.cs.princeton.edu 0.005 0.40 0.80 0.41 18

“@N” indicates the level number, where level 0 represents the root.

www.cs.illinois.edu
www.cs.illinois.edu
www.cs.illinois.edu
www.cs.illinois.edu
www.cs.ox.ac.uk
www.cs.ox.ac.uk
www.cs.ox.ac.uk
www.cs.ox.ac.uk
www.cs.princeton.edu
www.cs.princeton.edu
www.cs.princeton.edu
www.cs.princeton.edu
www.cs.illinois.edu
www.cs.illinois.edu
www.cs.illinois.edu
www.cs.illinois.edu
www.cs.ox.ac.uk
www.cs.ox.ac.uk
www.cs.ox.ac.uk
www.cs.ox.ac.uk
www.cs.princeton.edu
www.cs.princeton.edu
www.cs.princeton.edu
www.cs.princeton.edu

World Wide Web

Table 3 Evaluation of SMAP by varying the parameter dbLength (see Section 4.2)

Website dbLength Precision Recall F Precision Recall F

@1 @1 @1 @2 @2 @2

www.cs.illinois.edu 100K 1 0.63 0.77 0.80 0.54 0.52

www.cs.illinois.edu 500K 1 0.63 0.77 0.80 0.54 0.52

www.cs.illinois.edu 1M 1 0.63 0.77 0.8 0.547 0.52

www.cs.ox.ac.uk 100K 1 0.35 0.52 0.54 0.31 0.29

www.cs.ox.ac.uk 500K 1 0.34 0.51 0.53 0.30 0.28

www.cs.ox.ac.uk 1M 1 0.35 0.52 0.53 0.30 0.28

www.cs.princeton.edu 100K 1 0.19 0.32 0.73 0.36 0.37

www.cs.princeton.edu 500K 1 0.19 0.32 0.77 0.36 0.37

www.cs.princeton.edu 1M 1 0.19 0.32 0.79 0.42 0.39

“@N” indicates the level number, where level 0 represents the root.

Table 2 shows the effectiveness of SMAP by varying the minimum support. This table
shows that when the minimum support threshold decreases we are able to obtain wider
sitemaps. Consequently, as expected, by reducing the minimum support threshold precision
increases and recall decreases. This is due to the fact that, by decreasing the support, the
number of generated sequences increases and the extracted hierarchy becomes deeper and
wider, including website sections which are not included in the sitemap page. By analyzing
the F-measure we can see that t = 0.001 generally produces the best trade-off between
precision and recall, especially at the second level of the hierarchy.

The results reported in Table 3 show that, in general, it is not necessary to generate a
huge number of random walks: 100 thousand random walks for tens of thousands links is
enough to obtain the best results. The situation is slightly different for www.cs.princeton.
edu, where the different order of magnitude in the number of links requires more random
walks. Additionally, in Table 4 we notice that longer random walks lead to higher preci-
sion and smaller recall, although this trend (even though it is intuitively motivated) is not
statistically confirmed.

Finally, all the results show (as expected) that the first level of the sitemap is easier to
identify than the second level. This is a natural consequence of the larger number of pages at

Table 4 Evaluation of SMAP by varying the rwrLength parameter (see Section 4.2)

Website rwrLength Precision Recall F Precision Recall F

@1 @1 @1 @2 @2 @2

www.cs.illinois.edu 5 1 0.63 0.77 0.8 0.55 0.52

www.cs.illinois.edu 7 1 0.63 0.77 0.8 0.55 0.52

www.cs.illinois.edu 10 1 0.63 0.77 0.80 0.52 0.51

www.cs.ox.ac.uk 5 1 0.35 0.52 0.54 0.33 0.30

www.cs.ox.ac.uk 7 1 0.35 0.52 0.54 0.30 0.28

www.cs.ox.ac.uk 10 1 0.34 0.51 0.53 0.29 0.26

www.cs.princeton.edu 5 1 0.19 0.32 0.72 0.35 0.34

www.cs.princeton.edu 7 1 0.19 0.32 0.77 0.40 0.37

www.cs.princeton.edu 10 1 0.19 0.32 0.79 0.39 0.38

“@N” indicates the level number, where level 0 represents the root.

www.cs.illinois.edu
www.cs.illinois.edu
www.cs.illinois.edu
www.cs.ox.ac.uk
www.cs.ox.ac.uk
www.cs.ox.ac.uk
www.cs.princeton.edu
www.cs.princeton.edu
www.cs.princeton.edu
www.cs.princeton.edu
www.cs.princeton.edu
www.cs.illinois.edu
www.cs.illinois.edu
www.cs.illinois.edu
www.cs.ox.ac.uk
www.cs.ox.ac.uk
www.cs.ox.ac.uk
www.cs.princeton.edu
www.cs.princeton.edu
www.cs.princeton.edu

World Wide Web

the second level. In this respect, we also performed experiments with the dataset Princeton,
including the third level (so to obtain four-levels sitemaps). The best results obtained by
SMAP for this task are: precision= 0.61, recall= 0.27, Fmeasure= 0.38, with the following
configuration: contiguous, rwrLength = 10, minSupp = 0.0001, dbLength = 100k,
and precision: 0.83, recall: 0.68, Fmeasure: 0.75, with the following configuration: normal,
rwrLength = 10, minSupp = 0.001, dbLength = 500k. However, in this case, the
sitemap is not able to provide a high-level and concise description of the website content,
because the algorithm starts to produce a sitemap which is similar to the actual structure of
the website.

5.4 Results: Contiguous vs. non-contiguous closed sequential patterns

The results in Table 5 show a comparison between contiguous and non-contiguous (“nor-
mal” in the table) closed sequential patterns. As can be seen, there is no difference at the
first level, while at the second level contiguous sequences guarantee higher recall at the
price of lower precision. This is to be expected, since the set of frequent closed sequential
patterns includes the contiguous ones or, in other words, non-contiguous closed sequential
patterns introduce additional constraints in the construction of sitemaps. This reflects on the
size of the sitemaps: sitemaps extracted from normal closed sequential patterns are wider
than those extracted from contiguous closed sequential patterns and, consequently, they are
more difficult to browse and manage by the users.

5.5 Results: comparisons

In order to make comparisons, we focus on the results obtained by SMAP with t = 0.001 and
contiguous closed sequential patterns. As we have seen before, the support does not signifi-

Table 5 Evaluation of SMAP by considering closed sequential patterns (normal) and contiguous closed
sequential patterns (contiguous)

Website Type of closed Precision @1 Recall@1 F@1 no. edges @1

sequential patterns

www.cs.illinois.edu normal 1 0.63 0.77 19

www.cs.illinois.edu contiguous 1 0.63 0.77 19

www.cs.ox.ac.uk normal 1 0.35 0.52 23

www.cs.ox.ac.uk contiguous 1 0.35 0.52 23

www.cs.princeton.edu normal 1 0.19 0.32 31

www.cs.princeton.edu contiguous 1 0.19 0.32 31

Website Type of closed Precision @2 Recall@2 F@2 no. edges@2

sequential patterns

www.cs.illinois.edu normal 0.95 0.48 0.50 103

www.cs.illinois.edu contiguous 0.65 0.60 0.44 72

www.cs.ox.ac.uk normal 0.66 0.23 0.33 99

www.cs.ox.ac.uk contiguous 0.42 0.37 0.23 80

www.cs.princeton.edu normal 0.88 0.35 0.44 150

www.cs.princeton.edu contiguous 0.65 0.40 0.31 98

“@N” indicates the level number, where level 0 represents the root.

www.cs.illinois.edu
www.cs.illinois.edu
www.cs.ox.ac.uk
www.cs.ox.ac.uk
www.cs.princeton.edu
www.cs.princeton.edu
www.cs.illinois.edu
www.cs.illinois.edu
www.cs.ox.ac.uk
www.cs.ox.ac.uk
www.cs.princeton.edu
www.cs.princeton.edu

World Wide Web

cantly influence the results, while the type of closed sequential patterns may lead to signi-
ficant differences. We choose contiguous closed sequential patterns because, although they
do not lead to the best F value, they produce smaller, more easily interpretable sitemaps.

In Table 6 we show the precision, recall and F measure of SMAP, MST and HDTM.
Form the results, it is clear that, for sitemap extraction, the worst performing method is
HDTM. This can be explained by the different nature of the two algorithms: contrary to
SMAP and MST, HDTM organizes website pages in a hierarchy by using the distribution
of Web page terms. Then, it could happen that, for example, for a Computer Science depart-
ment website HDTM organizes the Web page of a professor as a child of its research area
Web page rather than as a child of the professors Web page. In this way, Web pages clus-
tered together as siblings in the hierarchy by Web masters are split into different parts of the
extracted hierarchy. At the third level, for the dataset Princeton, the HDTM results start to
degenerate (precision: 0.09, recall: 0.02, F-measure: 0.03) for the same reasons described
before, that is, because the sitemap is not able to provide a high-level and concise description
of the website content.

The second observation we can make by analyzing the results reported in Table 6 is that
there is no clear difference between SMAP and MST. While SMAP seems to perform better
in terms of recall, MST seems to provide slightly better results than SMAP in terms of
precision. On the contrary, in terms of F measure, SMAP always outperforms MST.

The statistical comparison of the three methods is reported in Figure 4. In this figure we
can see that the best performing methods is SMAP, but there is no statistical evidence that
SMAP outperforms MST in terms of precision.

To better analyze the pairwise comparison between SMAP and MST, in Table 7 we report
the results of the paired Wilcoxon signed rank test. They show that SMAP is not superior to
MST in terms of precision, but SMAP is clearly superior in terms of recall and F measure
(especially at the second level of the sitemap). On the other hand, SMAP outperforms MST
in terms of precision only at the first level of the hierarchy. This confirms that the usage
of closed sequential patterns provides significant benefits in terms of quality of extracted
sitemaps, if compared to simpler strategies like minimum spanning trees. The reason is that
closed sequential patterns are based on probabilistic evidence, which is not the case of MST,
which only exploits structural information.

Table 6 Precision, recall and F measure: We report the average (over the two levels) results of SMAP, MST
and HDTM

Precision Recall F Number of edges in sitemaps

www.cs.illinois.edu SMAP 0.929 0.723 0.804 107

MST 0.969 0.460 0.625 217

HDTM 0.285 0.310 0.290 32

www.cs.ox.ac.uk SMAP 0.767 0.268 0.397 112

MST 0.621 0.297 0.343 135

HDTM 0.515 0.215 0.302 102

www.cs.princeton.edu SMAP 0.919 0.302 0.436 155

MST 0.968 0.179 0.323 230

HDTM 0.640 0.125 0.210 223

SMAP results are obtained with t=0.001 and with contiguous closed sequential patters. The best result for
the dataset/measure is reported in bold. The last column reports the number of edges in the extracted sitemaps

www.cs.illinois.edu
www.cs.ox.ac.uk
www.cs.princeton.edu

World Wide Web

Figure 4 Nemenyi test for
comparing multiple methods at
different levels by considering all
the datasets. The best
configurations are positioned on
the right. The algorithms that do
not differ significantly are
connected with a line

(a) Precision

(b) Recall

(c) F

5.6 Qualitative results

A final analysis is aimed at qualitatively analyzing the sitemaps extracted. The first aspect
we investigate is the size of the extracted sitemaps. From the last column of Table 6, we
can see that SMAP extracts sitemaps which are quite stable in size. Actually, small changes
in the size of the sitemaps reflect, somehow, the size of the dataset. On the contrary, by

Table 7 p-values of the Wilcoxon signed-rank test between SMAP and MST

Precision Recall F

Lev 1 0.001 (+) 0.470 (+) 0.470 (+)

Lev 2 0.064 (-) 0.001 (+) 0.001(+)

Total 0.429(+) 0.001(+) 0.001(+)

In bold, we report significant p-values (< 0.05). ‘+’ means that SMAP outperforms MST, whereas ‘−’
means that MST outperforms SMAP

World Wide Web

Figure 5 An example of a sitemap (only first level) extracted from www.cs.ox.ac.uk. SMAP was run with
t = 0.001 and for mining contiguous closed sequential patternss

www.cs.ox.ac.uk

World Wide Web

looking at the size of sitemaps extracted by HDTM, we see that there is high variability
among the datasets. The effect we observe is that, for datasets with a large number of links,
the generated sitemaps tend to overfit graph G (high precision, low recall), whereas if the
number of links is relatively small, generated sitemaps tend to be quite general (recall >

precision). As for MST, we can see that, although the size of sitemaps is quite stable, the ex-
tracted sitemaps contain many more Web pages, making them difficult to browse and view.

In Figure 5 we show an example of an extracted sitemap. All the Web pages identified
by SMAP are present in the real sitemap, but only 35% of the Web pages present in the real
sitemap are returned by SMAP. This is a clear indication that it is possible to simplify the
real sitemap, since, many Web pages at the very first level are not easily reachable. This is
due to the Web page structure and the hyperlink structure of the website. The solution is to
make the Web pages more easily accessible, if necessary.

6 Conclusions

In this paper we have presented a new method for the automatic generation of sitemaps.
SMAP successfully addresses the open issue of the extraction of hierarchical website orga-
nization, as understood and codified by Web masters through website navigation systems
(e.g. menu, navbar, content list, etc.). Moreover, it provides Web masters with a tool for
automatic sitemap generation, which can be helpful for explicitly specifying of the design
concept and knowledge organization of websites.

The experimental results prove the effectiveness of SMAP compared to HDTM, a state-
of-the-art algorithm, which generates sitemaps based on the distribution of Web page terms.
The experiments also statistically prove the effectiveness of the sequential pattern mining
approach, with respect to simpler and more common strategies, such as minimum spanning
tree extraction.

As future work, we will investigate how to combine sitemaps, which describe the topical
organization of a website (e.g. sitemaps extracted by HDTM), with sitemaps which describe
the structural organization of the website. Moreover, we will investigate the usage of high-
utility as an alternative to closed sequential patterns.

Acknowledgements We would like to acknowledge the support of the European Commission through the
projects MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data (Grant Number
ICT-2013-612944) and TOREADOR - Trustworthy Model-aware Analytics Data Platform (Grant Num-
ber H2020-688797). We would also like to thank Lynn Rudd for her help in reading and correcting the
manuscript.

Funding Open access funding provided by Università degli Studi di Bari Aldo Moro within the CRUI-
CARE Agreement.

Availability The source code and the datasets are available at the following hyperlink: https://github.com/
fabiana001/sitemap-generator.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

https://github.com/fabiana001/sitemap-generator
https://github.com/fabiana001/sitemap-generator
http://creativecommonshorg/licenses/by/4.0/

World Wide Web

References

1. Aggarwal, C.C., Zhai, C.: A Survey of Text Clustering Algorithms. In: Aggarwal, C.C., Zhai, C. (eds.)
Mining Text Data, pp. 77–128. Springer (2012)

2. Algosaibi, A.A., Melton, A.C.: Using the semantics inherent in sitemaps to learn ontologies. In: IEEE
38Th Annual Computer Software and Applications Conference, COMPSAC Workshops 2014, Vasteras,
Sweden, July 21-25, 2014, pp. 360–365. IEEE Computer Society (2014)

3. Anderson, C.R., Domingos, P., Weld, D.S.: Adaptive Web navigation for wireless devices. In: Pro-
ceedings of the 17th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’01,
pp. 879–884. Morgan Kaufmann Publishers Inc., San Francisco (2001)

4. Baumgarten, M., Büchner, A.G., Anand, S.S., Mulvenna, M.D., Hughes, J.G.: User-driven navigation
pattern discovery from internet data. In: Revised Papers from the International Workshop on Web Usage
Analysis and User Profiling, WEBKDD ’99, pp. 74–91. Springer, London (2000)

5. Crescenzi, V., Merialdo, P., Missier, P.: Clustering Web pages based on their structure. Data Knowl. Eng.
54(3), 279–299 (2005)

6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30
(2006)

7. Fang, X., Holsapple, C.W.: An empirical study of Web site navigation structures’ impacts on Web
site usability. Decision Support Systems 43(2), 476–491 (2007). Emerging Issues in Collaborative
Commerce

8. Firth, J.R.: Papers in linguistics 1934–51. Oxford University Press (1957)
9. Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S.: A survey of sequential pattern mining. Data

Science and Pattern Recognition 1(1), 54–77 (2017)
10. Fournier-Viger, P., Lin, J.C.W., Nkambou, R., Vo, B., Tseng, V.S.: High-Utility Pattern Mining: Theory,

Algorithms and Applications, 1St Edn, Springer Publishing Company, Incorporated (2019)
11. Fumarola, F., Lanotte, P.F., Ceci, M., Malerba, D.: Clofast: closed sequential pattern mining using sparse

and vertical id-lists Knowledge and Information Systems (2016)
12. Gan, W., Lin, C., Fournier-Viger, P., Chao, H., Tseng, V., Yu, P.: A survey of utility-oriented pattern

mining. IEEE Trans. Knowl. Data Eng., pp 1–1 (2019)
13. Gan, W., Lin, J.C., Zhang, J., Chao, H., Fujita, H., Yu, P.S.: Proum: high utility sequential pattern mining.

In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 767–773 (2019)
14. Gomariz, A., Campos, M., Marı́n, R., Goethals, B.: ClaSP: An Efficient Algorithm for Mining Frequent

Closed Sequences. In: PAKDD (1), pp. 50–61 (2013)
15. Görnerup, O., Gillblad, D., Vasiloudis, T.: Knowing an object by the company it keeps: a domain-

agnostic scheme for similarity discovery. In: Aggarwal, C., Zhou, Z., Tuzhilin, A., Xiong, H., Wu,
X. (eds.) 2015 IEEE International Conference on Data Mining, ICDM 2015, Atlantic City, NJ, USA,
November 14-17, 2015, pp. 121–130. IEEE Computer Society (2015)

16. He, D., Wu, D., Graves, W., Klein, M.: Creation of a DL by the Communities and for the Communities.
In: 2019 ACM/IEEE joint conference on digital libraries (JCDL), pp. 327–328 (2019)

17. Huang, K.Y., Chang, C.H., Tung, J.H., Ho, C.T.: COBRA: closed sequential pattern mining using bi-
phase reduction approach. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK, Lecture Notes in Computer Science,
vol. 4081, pp. 280–291. Springer (2006)

18. Keller, M., Mühlschlegel, P., Hartenstein, H.: Search result presentation: Supporting post-search navi-
gation by integration of taxonomy data. In: Proceedings of the 22nd International Conference on World
Wide Web, WWW ’13 Companion, pp. 1269-1274. ACM, New York (2013)

19. Keller, M., Nussbaumer, M.: Menuminer: Revealing the information architecture of large Web sites by
analyzing maximal cliques. In: Proceedings of the 21st International Conference on World Wide Web,
WWW ’12 Companion, pp. 1025–1034. ACM, New York (2012)

20. Kim, D.J., Lee, S.C., Son, H.Y., Kim, S.W., Lee, J.B.: C-rank: A contribution-based Web page rank-
ing approach. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC ’14,
pp. 908–912. Association for Computing Machinery, New York (2014)

21. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. In:
Proceedings of the American Mathematical Society, pp. 7:48–50 (1956)

22. Lanotte, P.F., Fumarola, F., Ceci, M., Scarpino, A., Torelli, M., Malerba, D.: Automatic extraction of log-
ical Web lists. In: Andreasen, T., Christiansen, H., Cubero, J.C., Raś, Z. (eds.) Foundations of Intelligent
Systems, Lecture Notes in Computer Science, vol. 8502, pp. 365–374. Springer International Publishing
(2014)

23. Lanotte, P.F., Fumarola, F., Malerba, D., Ceci, M.: Automatic generation of sitemaps based on navigation
systems. In: Pardalos, P.M., Conca, P., Giuffrida, G., Nicosia, G. (eds.) Machine Learning, Optimization,

World Wide Web

and Big Data - Second International Workshop, MOD 2016, Volterra, Italy, August 26-29, 2016, Revised
Selected Papers, Lecture Notes in Computer Science, vol. 10122, pp. 216–223. Springer (2016)

24. Lee, U., Liu, Z., Cho, J.: Automatic identification of user goals in Web search. In: Proceedings of the
14th International Conference on World Wide Web, WWW ’05, pp. 391–400. ACM, New York (2005)

25. Lie, H.W., Bos, B.: Cascading Style Sheets:Designing for the Web, 2nd Edition Addison-Wesley
Professional (1999)

26. Lin, C.X., Yu, Y., Han, J., Liu, B.: Hierarchical web-page clustering via in-page and cross-page link
structures. In: Proceedings of the 14th Pacific-Asia Conference on Advances in Knowledge Discovery
and Data Mining - Volume Part II, PAKDD’10, pp. 222–229. Springer, Berlin (2010)

27. Lin, S.H., Chu, K.P., Chiu, C.M.: Automatic sitemaps generation: Exploring website structures using
block extraction and hyperlink analysis. Expert Syst. Appl. 38(4), 3944–3958 (2011)

28. Liu, Z., Ng, W.K., Lim, E.P.: An automated algorithm for extracting Website skeleton. In: Database
Systems for Advanced Applications, pp. 799–811. Springer (2004)

29. Luo, Y., She, G., Cheng, P., Xiong, Y.: Botgraph: Web bot detection based on sitemap. arXiv:1903.08074
(2019)

30. Mobasher, B.: Data mining for Web personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The
Adaptive Web, Methods and Strategies of Web Personalization, Lecture Notes in Computer Science,
vol. 4321, pp. 90–135. Springer (2007)

31. Mooney, C., Roddick, J.F.: Sequential pattern mining - approaches and algorithms. ACM Comput. Surv.
45(2), 19:1–19:39 (2013)

32. Nakagawa, M., Mobasher, B.: A hybrid Web personalization model based on site connectivity. In:
Proceedings of WebKDD, pp. 59–70 (2003)

33. Nemenyi, P.B.: Distribution-free Multiple Comparisons. Ph.D. Thesis, Princeton University, Princeton
(1963)

34. Nielsen, J., Loranger, H.: Prioritizing Web usability. New riders publishing, thousand oaks, CA USA
(2006)

35. Olston, C., Chi, E.H.: Scenttrails: Integrating browsing and searching on the web. ACM Trans. Comput.-
hum Interact. 10(3), 177–197 (2003)

36. Pons, P., Latapy, M.: Computing communities in large networks using random walks. Journal of Graph
Algorithms and Applications 10(2), 191–218 (2006)

37. Qi, X., Davison, B.D.: Web page classification: Features and algorithms. ACM Comput. Surv. 41(2),
12:1–12:31 (2009)

38. Wang, J., Han, J., Li, C.: Frequent closed sequence mining without candidate maintenance. IEEE Trans.
on Knowl. Data Eng. 19, 1042–1056 (2007)

39. Wang, X., Ahuja, N., Llorens, N., Bansal, R., Dhar, S.: Toward an intelligent crawling scheduler for
archiving news websites using reinforcement learning. Tech. rep., Virginia Tech. http://hdl.handle.net/
10919/96482 (2019)

40. Weninger, T., Bisk, Y., Han, J.: Document-topic hierarchies from document graphs. In: Proceedings
of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12,
pp. 635–644. ACM, New York (2012)

41. Weninger, T., Han, J.: Exploring structure and content on the web: Extraction and integration of the
semi-structured web. In: Proceedings of the Sixth ACM International Conference on Web Search and
Data Mining, WSDM ’13, pp. 779–780. Association for Computing Machinery, New York (2013)

42. Weninger, T., Johnston, T.J., Han, J.: The parallel path framework for entity discovery on the web. TWEB
7(3), 16:1–16:29 (2013)

43. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1, 80–83 (1945)
44. Yan, X., Han, J., Afshar, R.: Clospan: Mining Closed Sequential Patterns in Large Datasets. In: SDM,

pp. 166–177 (2003)
45. Yang, C.C., Liu, N.: Web site topic-hierarchy generation based on link structure. J. Am. Soc. Inf. Sci.

Technol. 60(3), 495–508 (2009)
46. Yin, Z., Gupta, M., Weninger, T., Han, J.: A unified framework for link recommendation using random

walks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining, pp.
152–159 (2010)

47. Yujian, L., Bo, L.: A normalized levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell.
29(6), 1091–1095 (2007)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1903.08074
http://hdl.handle.net/10919/96482
http://hdl.handle.net/10919/96482

	Closed sequential pattern mining for sitemap generation
	Abstract
	Introduction
	Related work
	Sitemap extraction
	Sequential pattern mining for Web mining
	Automatic extraction of Web lists

	Extraction of sitemaps: useful definitions
	Methodology
	Website crawling
	Sequence database generation
	Mining sitemaps
	Time and space complexity

	Experiments and discussion
	Datasets
	Experimental setting
	Results: influence of parameters
	Results: Contiguous vs. non-contiguous closed sequential patterns
	Results: comparisons
	Qualitative results

	Conclusions
	References

