195 research outputs found

    Predicting the safety and efficacy of butter therapy to raise tumour pHe: an integrative modelling study

    Get PDF
    Background: Clinical positron emission tomography imaging has demonstrated the vast majority of human cancers exhibit significantly increased glucose metabolism when compared with adjacent normal tissue, resulting in an acidic tumour microenvironment. Recent studies demonstrated reducing this acidity through systemic buffers significantly inhibits development and growth of metastases in mouse xenografts.\ud \ud Methods: We apply and extend a previously developed mathematical model of blood and tumour buffering to examine the impact of oral administration of bicarbonate buffer in mice, and the potential impact in humans. We recapitulate the experimentally observed tumour pHe effect of buffer therapy, testing a model prediction in vivo in mice. We parameterise the model to humans to determine the translational safety and efficacy, and predict patient subgroups who could have enhanced treatment response, and the most promising combination or alternative buffer therapies.\ud \ud Results: The model predicts a previously unseen potentially dangerous elevation in blood pHe resulting from bicarbonate therapy in mice, which is confirmed by our in vivo experiments. Simulations predict limited efficacy of bicarbonate, especially in humans with more aggressive cancers. We predict buffer therapy would be most effectual: in elderly patients or individuals with renal impairments; in combination with proton production inhibitors (such as dichloroacetate), renal glomular filtration rate inhibitors (such as non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitors), or with an alternative buffer reagent possessing an optimal pK of 7.1–7.2.\ud \ud Conclusion: Our mathematical model confirms bicarbonate acts as an effective agent to raise tumour pHe, but potentially induces metabolic alkalosis at the high doses necessary for tumour pHe normalisation. We predict use in elderly patients or in combination with proton production inhibitors or buffers with a pK of 7.1–7.2 is most promising

    Fasting increases susceptibility to acute myocardial ischaemia/reperfusion injury through a sirtuin-3 mediated increase in fatty acid oxidation.

    Get PDF
    Fasting increases susceptibility to acute myocardial ischaemia/reperfusion injury (IRI) but the mechanisms are unknown. Here, we investigate the role of the mitochondrial NAD+-dependent deacetylase, Sirtuin-3 (SIRT3), which has been shown to influence fatty acid oxidation and cardiac outcomes, as a potential mediator of this effect. Fasting was shown to shift metabolism from glucose towards fatty acid oxidation. This change in metabolic fuel substrate utilisation increased myocardial infarct size in wild-type (WT), but not SIRT3 heterozygous knock-out (KO) mice. Further analysis revealed SIRT3 KO mice were better adapted to starvation through an improved cardiac efficiency, thus protecting them from acute myocardial IRI. Mitochondria from SIRT3 KO mice were hyperacetylated compared to WT mice which may regulate key metabolic processes controlling glucose and fatty acid utilisation in the heart. Fasting and the associated metabolic switch to fatty acid respiration worsens outcomes in WT hearts, whilst hearts from SIRT3 KO mice are better adapted to oxidising fatty acids, thereby protecting them from acute myocardial IRI

    Assessment of Right Ventricular Function in the Research Setting: Knowledge Gaps and Pathways Forward. An Official American Thoracic Society Research Statement

    Get PDF
    BACKGROUND: Right ventricular (RV) adaptation to acute and chronic pulmonary hypertensive syndromes is a significant determinant of short- and long-term outcomes. Although remarkable progress has been made in the understanding of RV function and failure since the meeting of the NIH Working Group on Cellular and Molecular Mechanisms of Right Heart Failure in 2005, significant gaps remain at many levels in the understanding of cellular and molecular mechanisms of RV responses to pressure and volume overload, in the validation of diagnostic modalities, and in the development of evidence-based therapies. METHODS: A multidisciplinary working group of 20 international experts from the American Thoracic Society Assemblies on Pulmonary Circulation and Critical Care, as well as external content experts, reviewed the literature, identified important knowledge gaps, and provided recommendations. RESULTS: This document reviews the knowledge in the field of RV failure, identifies and prioritizes the most pertinent research gaps, and provides a prioritized pathway for addressing these preclinical and clinical questions. The group identified knowledge gaps and research opportunities in three major topic areas: 1) optimizing the methodology to assess RV function in acute and chronic conditions in preclinical models, human studies, and clinical trials; 2) analyzing advanced RV hemodynamic parameters at rest and in response to exercise; and 3) deciphering the underlying molecular and pathogenic mechanisms of RV function and failure in diverse pulmonary hypertension syndromes. CONCLUSIONS: This statement provides a roadmap to further advance the state of knowledge, with the ultimate goal of developing RV-targeted therapies for patients with RV failure of any etiology

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Can we improve outcome of congenital diaphragmatic hernia?

    Get PDF
    This review gives an overview of the disease spectrum of congenital diaphragmatic hernia (CDH). Etiological factors, prenatal predictors of survival, new treatment strategies and long-term morbidity are described. Early recognition of problems and improvement of treatment strategies in CDH patients may increase survival and prevent secondary morbidity. Multidisciplinary healthcare is necessary to improve healthcare for CDH patients. Absence of international therapy guidelines, lack of evidence of many therapeutic modalities and the relative low number of CDH patients calls for cooperation between centers with an expertise in the treatment of CDH patients. The international CDH Euro-Consortium is an example of such a collaborative network, which enhances exchange of knowledge, future research and development of treatment protocols

    Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Get PDF
    Background: Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods: To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results: The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1alpha (HIF-1alpha) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion: In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways
    corecore