94 research outputs found

    Solid state physicochemical properties and applications of organic and metallo-organic fullerene derivatives

    Get PDF
    We review the fundamental properties and main applications of organic derivatives and complexes of fullerenes in the solid-state form. We address in particular the structural properties, in terms of crystal structure, polymorphism, orientational transitions and morphology, and the electronic structure and derived properties, such as chemical activity, electrical conduction mechanisms, optical properties, heat conduction and magnetism. The last two sections of the review focus on the solid-state optoelectronic and electrochemical applications of fullerene derivatives, which range from photovoltaic cells to field-effect transistors and photodetectors on one hand, to electron-beam resists, electrolytes and energy storage on the other.Peer ReviewedPreprin

    Relaxation dynamics in disordered systems

    Get PDF
    The nature of the glass transition and of the glassy state is a fundamental and still unsolved problem of condensed matter physics. Many liquids can be supercooled below their melting point without crystallizing, that is, without acquiring translational and orientational order. As the temperature of a supercooled liquid is lowered, the characteristic timescale of moleuclar motions, called relaxation time, increases until it becomes comparable to the timescale of human experimentation. This takes place at the glass transition temperature and leads to a non-equilibrium state of matter, called a ¿structural glass¿, in which a liquid-like lack of order is combined with solid-like elastic properties. Glass transitions are also observed in systems where there is only orientational disorder, such as orientationally disordered (OD) crystals or plastic crystals, which are translationally ordered solids in which the constituent molecules display reorientational motions about their centres of mass. Upon supercooling an OD crystal, the orientational disorder can ¿freeze¿, yielding a so-called ¿orientational glass¿. In molecular materials forming structural or orientational glasses, the most important molecular dynamics process is the cooperative motion of the molecules, referred to as primary relaxation, whose freezing marks the transition to the glass state characterized by static disorder. The main difference between orientational and structural glasses is that in the former the freezing involves exclusively the rotational degrees of freedom of the molecules, while in the latter all six molecular degrees of freedom (i.e., both orientational and translational ones) are frozen. Orientational glasses are therefore systems with fewer degrees of freedom than structural glasses. This simplification, together with the fact that many OD phases are characterized by a crystal lattice with high symmetry, makes OD phases a model playground to investigate the nature of the glass transition. Other than the primary relaxation, there can be also so-called ¿secondary relaxations¿, usually characterized by shorter relaxation time than the primary process. Secondary relaxations may have different origins; for example, they can be due to conformational fluctuations or intramolecular vibrations; in many cases a special kind of secondary relaxation is observed, which is the single-molecule precursor process of the primary relaxation. This thesis focuses on the effect of pressure and temperature on the dynamics of several pure compounds and binary mixtures forming structural or orientational glasses. We present a comparative study between two structural glass formers (ternidazole and the mixture of m-fluoroaniline with m-xylene), a plastic binary mixed crystal (neopenthyl alchol and neopentyl glycol), and two materials displaying statistical orientational disorder (2-adamantanone and pentachloronitrobenzene). In all cases a primary relaxation is present, associated with the collective motion of the molecules, and in most cases also secondary relaxations are observed. For each material, we analyse the temperature- and pressure-dependence of the various molecular relaxation and discuss the origin of secondary processes. One of the most important results of the thesis is the presence of secondary relaxations also in systems with low-dimensional disorder that behave similarly to the secondary relaxations observed in structural glasses.La naturaleza de la transición vítrea es un problema fundamental y aún no resuelto de la física de la materia condensada. Muchos líquidos pueden ser superenfriados por debajo de su temperatura de fusión sin que cristalicen, es decir, sin que adquieran orden traslacional y orientacional. Cuando la temperatura de un líquido superenfriado baja, el tiempo característico de los movimientos moleculares, llamado tiempo de relajación, aumenta hasta llegar a tiempos comparables con el tiempo característico de los experimentos y de la observación humana. Esto ocurre a una temperatura llamada temperatura de transición vítrea y lleva a un estado de non-equilibrio del material llamado ¿vidrio estructural¿, en el que la ausencia de orden de largo alcance típica del estado líquido se combina con las propiedades elásticas propias de un sólido ordenado. Las transiciones vítreas se pueden observar también en sistemas caracterizados por desorden exclusivamente orientacional, como en los cristales orientacionalmente desordenados (OD) o cristales plásticos. Estos son sólidos traslacionalmente ordenados en los que las moléculas tienen movimientos de reorientación alrededor de sus centros de masa, que están fijos. Superenfriando un cristal OD se obtiene un ¿vidrio orientacional¿ en el cual este desorden orientacional está congelado. El proceso dinámico más importante que caracteriza los materiales moleculares que forman vidrios estructurales u orientacionales es el movimiento cooperativo de las moléculas conocido como relajación primaria. Su congelamiento marca la transición al estado vítreo caracterizado por un desorden estático. La diferencia principal entre los vidrios orientacionales y estructurales es que en los primeros el congelamiento involucra sólo los grados de libertad de rotación, mientras que en los segundos todos los seis grados de libertad moleculares (orientacionales y traslacionales) están congelados. Por tanto, los vidrios orientacionales son sistemas con menos grados de libertad respecto los vidrios estructurales y pueden considerarse como sistemas modelo para investigar la transición vítrea, ya que además muchas fases OD están caracterizadas por redes cristalinas de alta simetría. Además de la relajación primaria, existen también relajaciones secundarias caracterizadas por tiempos de relajación más cortos con respecto al proceso primario. Estas relajaciones secundarias pueden tener diferentes orígenes: por ejemplo, pueden ser debidas a fluctuaciones de la conformación molecular o a vibraciones de enlaces intramoleculares; en muchos casos se observa una relajación secundaria que es considerada como la precursora del proceso primario (relajación Johari-Goldstein). Esta tesis está enfocada en el estudio de los efectos de la presión y de la temperatura sobre la dinámica de algunos compuestos puros y mezclas binarias, los cuales forman vidrios estructurales u orientacionales. Se presenta un estudio comparativo entre dos vidrios estructurales (ternidazole y la mezcla de m-fluoroanilina con m-xileno), un cristal plástico binario (formado por neopenthyl alcohol y neopentyl glycol), y dos materiales que presentan desorden estadístico (2-adamantanona y pentacloronitrobenceno). En todos los casos se observa una relajación primaria asociada a los movimientos colectivos de las moléculas y en la mayoría de los casos se observa también relajaciones secundarias. Para cada material se analiza la dependencia de diferentes relajaciones con la temperatura y con la presión y se discute el origen de los procesos secundarios. Uno de los resultados importantes de la tesis es que en sistemas con desorden de baja dimensionalidad, pueden aparecer relajaciones secundarias que obecen a patrones similares a las encontradas en vidrios estructurale

    Glass transition, crystallization kinetics, and inter-conformer relaxation dynamics of amorphous mitotane and related compounds

    Get PDF
    We employ differential scanning calorimetry, broadband dielectric spectroscopy and optical microscopy to investigate the glass transition, molecular relaxation dynamics, and isothermal recrystallization kinetics of amorphous mitotane, the only drug approved for the pharmacological treatment of adrenocortical carcinoma. Amorphous mitotane displays a glass transition at Tg = 243 ± 1 K, characterized by relatively low fragility index of 68 ± 2. Besides the structural and Johari-Goldstein relaxations, amorphous mitotane displays an intramolecular relaxation with activation energy of 25 ± 1 kJ mol-1. The same relaxation process, with virtually the same activation energy and relaxation times, is observed in the closely-related o,p’-dichlorobenzophenone compound, which allows identifying it as the rotation of the chlorobenzene ring with the chlorine closest to the central carbon. Such conformational relaxation is active at human body temperature, and may thus be potentially relevant for the mechanism of action of the drug. Our study shows that the comparative study of the relaxation map of related molecular species is a powerful tool to identify and classify secondary relaxation processes. The amorphous drug is found to be unstable against recrystallization at as well as slightly below room temperature, and to display-two-dimensional growth with only sporadic nucleation, characterized by an Avrami kinetic exponent of 2.05 ± 0.05. The kinetic stability of the amorphous form of mitotane, observed at room temperature in micellar formulations, is therefore limited to the nanoconfined sample and is not observed in the bulk compound.Peer ReviewedPostprint (published version

    Inter-enantiomer conversion dynamics and Johari–Goldstein relaxation of benzophenones

    Get PDF
    We employ temperature- and pressure-dependent dielectric spectroscopy, as well as differential scanning calorimetry, to characterize benzophenone and the singly-substituted ortho-bromobenzophenone derivative in the liquid and glass states, and analyze the results in terms of the molecular conformations reported for these molecules. Despite the significantly higher mass of the brominated derivative, its dynamic and calorimetric glass transition temperatures are only ten degrees higher than those of benzophenone. The kinetic fragility index of the halogenated molecule is lower than that of the parent compound, and is found to decrease with increasing pressure. By a detailed analysis of the dielectric loss spectra, we provide evidence for the existence of a Johari–Goldstein (JG) relaxation in both compounds, thus settling the controversy concerning the possible lack of a JG process in benzophenone and confirming the universality of this dielectric loss feature in molecular glass-formers. Both compounds also display an intramolecular relaxation, whose characteristic timescale appears to be correlated with that of the cooperative structural relaxation associated with the glass transition. The limited molecular flexibility of ortho-bromobenzophenone allows identifying the intramolecular relaxation as the inter-enantiomeric conversion between two isoenergetic conformers of opposite chirality, which only differ in the sign of the angle between the brominated aryl ring and the coplanar phenyl-ketone subunit. The observation by dielectric spectroscopy of a similar relaxation also in liquid benzophenone indicates that the inter-enantiomer conversion between the two isoenergetic helicoidal ground-state conformers of opposite chirality occurs via a transition state characterized by a coplanar phenyl-ketone moiety.Peer ReviewedPostprint (published version

    Orientational relaxations in solid (1,1,2,2)tetrachloroethane

    Get PDF
    We employ dielectricspectroscopy and molecular dynamic simulations to investigate the dipolar dynamics in the orientationally disordered solid phase of (1,1,2,2)tetrachloroethane. Three distinct orientational dynamics are observed as separate dielectric loss features, all characterized by a simply activated temperature dependence. The slower process, associated to a glassytransition at 156 ± 1 K, corresponds to a cooperative motion by which each molecule rotates by 180° around the molecular symmetry axis through an intermediate state in which the symmetry axis is oriented roughly orthogonally to the initial and final states. Of the other two dipolar relaxations, the intermediate one is the Johari-Goldstein precursor relaxation of the cooperative dynamics, while the fastest process corresponds to an orientational fluctuation of single molecules into a higher-energy orientation. The Kirkwood correlation factor of the cooperative relaxation is of the order of one tenth, indicating that the molecular dipoles maintain on average a strong antiparallel alignment during their collective motion. These findings show that the combination of dielectricspectroscopy and molecular simulations allows studying in great detail the orientational dynamics in molecular solids.Peer ReviewedPostprint (author's final draft

    Implanted muon spin spectroscopy on 2-O-adamantane: a model system that mimics the liquid

    Get PDF
    The transition taking place between two metastable phases in 2-O-adamantane, namely the [Formula: see text] cubic, rotator phase and the lower temperature P21/c, Z  =  4 substitutionally disordered crystal is studied by means of muon spin rotation and relaxation techniques. Measurements carried out under zero, weak transverse and longitudinal fields reveal a temperature dependence of the relaxation parameters strikingly similar to those exhibited by structural glass[Formula: see text]liquid transitions (Bermejo et al 2004 Phys. Rev. B 70 214202; Cabrillo et al 2003 Phys. Rev. B 67 184201). The observed behaviour manifests itself as a square root singularity in the relaxation rates pointing towards some critical temperature which for amorphous systems is located some tens of degrees above that shown as the characteristic transition temperature if studied by thermodynamic means. The implications of such findings in the context of current theoretical approaches concerning the canonical liquid-glass transition are discussed.Postprint (author's final draft

    Water-triggered conduction and polarization effects in a hygroscopic fullerene salt

    Get PDF
    Impedance spectroscopy is employed to probe the frequency-dependent conductivity and dielectric response of the crystalline C60O24Na24 fulleride, both in its pure form obtained by heating to 473 K and in its bulk-hydrate form stable only below 390 K, of chemical formula C60O24Na24 ·16 H2O. A dielectric loss feature is visible in both the pure material and the hydrate, displaying different strength and activated behavior in different temperature ranges.Peer ReviewedPostprint (published version

    Tracking the dynamics of power sources and sinks during the martensitic transformation of a Cu-Al-Ni single crystal

    Get PDF
    We have tracked the dynamics of the martensitic transformation in a Cu-Al-Ni single crystal by means of acoustic emission and infrared imaging techniques. A Fourier equation-based post-processing of temperature maps has enabled us to reveal the inhomogeneous and discontinuous character of heat power sources and sinks during the transiton. A good correlation between the dynamics of thermal and mechanical energy release has been evidenced. It has also been shown that the merging of martensitic interfaces results in an enhanced heat absorptio

    C60 solvate with (1,1,2)-trichloroethane: dynamic statistical disorder and mixed conformation

    Get PDF
    We present a full characterization of the orientationally disordered cocrystal of C-60 with (1,1,2)-triChloroethane (C2H3Cl3), by means of X-ray diffraction, Raman spectroscopy, and broadband dielectric spectroscopy. Our results include the determination of molecular con formations, lattice structure, positional disorder, and, molecular reorientational dynamics down to the microsecond time scale. We find that, while in the disordered solid phase of pure C2H3Cl3 the molecules exist only in the gauche conformation, both gauche and transoid conformers are present in the solvate, where they occupy the largest interstitial cavities between the fullerene species. The two C2H3Cl3 conformers exhibit separate, independent relaxations, exhibiting simply activated behavior in the measured temperature range. The relaxation, of the transoid conformer, which has twice the dipole moment of the gmiehe isomer, is significantly slower than that of the latter, due to the high polarizability of C-60 resulting in an electrostatic drag against the reorientations of the dipolar C2H3O3 species. The observation of two distinct, simply activated relaxations freezing at distinct temperatures indicates:that they are not truly many-body relaxations, which may be rationalized considering:that the C2H3Cl3 molecules are separated by the relatively bulky C-60 spacers.Peer ReviewedPostprint (published version

    Drug-Biopolymer Dispersions: Morphology- and Temperature- Dependent (Anti)Plasticizer Effect of the Drug and Component-Specific Johari–Goldstein Relaxations

    Full text link
    Amorphous molecule-macromolecule mixtures are ubiquitous in polymer technology and are one of the most studied routes for the development of amorphous drug formulations. For these applications it is crucial to understand how the preparation method affects the properties of the mixtures. Here, we employ differential scanning calorimetry and broadband dielectric spectroscopy to investigate dispersions of a small-molecule drug (the Nordazepam anxiolytic) in biodegradable polylactide, both in the form of solvent-cast films and electrospun microfibres. We show that the dispersion of the same small-molecule compound can have opposite (plasticizing or antiplasticizing) effects on the segmental mobility of a biopolymer depending on preparation method, temperature, and polymer enantiomerism. We compare two different chiral forms of the polymer, namely, the enantiomeric pure, semicrystalline L-polymer (PLLA), and a random, fully amorphous copolymer containing both L and D monomers (PDLLA), both of which have lower glass transition temperature (Tg) than the drug. While the drug has a weak antiplasticizing effect on the films, consistent with its higher Tg, we find that it actually acts as a plasticizer for the PLLA microfibres, reducing their Tg by as much as 14 K at 30%-weight drug loading, namely, to a value that is lower than the Tg of fully amorphous films. The structural relaxation time of the samples similarly depends on chemical composition and morphology. Most mixtures displayed a single structural relaxation, as expected for homogeneous samples. In the PLLA microfibres, the presence of crystalline domains increases the structural relaxation time of the amorphous fraction, while the presence of the drug lowers the structural relaxation time of the (partially stretched) chains in the microfibres, increasing chain mobility well above that of the fully amorphous polymer matrix. Even fully amorphous homogeneous mixtures exhibit two distinct Johari–Goldstein relaxation processes, one for each chemical component. Our findings have important implications for the interpretation of the Johari–Goldstein process as well as for the physical stability and mechanical properties of microfibres with small-molecule additives
    corecore