82 research outputs found

    Feral rabbit populations in a peri-urban area: insights about invasion dynamics and potential management strategies

    Get PDF
    AbstractWhere introduced, the European rabbit Oryctolagus cuniculus is considered among the most destructive and invasive species. To date, research focused mostly on populations of wild rabbit, whereas little is known on feral domestic rabbit populations. In this work, we reported the establishment of two self-sustaining populations of feral rabbits in Italy. Direct observations were conducted to assess rabbit range expansion and population increase over time. We also evaluated prey-predator interactions between rabbits and native red foxes Vulpes vulpes, by means of camera trapping and the analysis of fox scats. Moreover, we also assessed the social perception towards feral rabbits and the acceptability of various management options through the administration of a structured questionnaire to park visitors. Rabbit populations increased between 2018 and 2019, as well as the size of the invaded range. Rabbits are predated by foxes, but they seem to have adapted their activity rhythms to minimize the risk of predation, becoming diurnal. Park visitors loved rabbits and deemed them to be a positive presence in the park, which deserve to live there. Surgical sterilization of rabbits was the only management option which was partially supported. Feral domestic rabbits, albeit a neglected species in invasion biology, can become extremely successful invaders of urban green areas: in < 5 years, rabbits were able to colonize our study area and become a food resource for native predators and also an iconic species. These three points raise concerns about the potential impacts of invasive feral rabbits in European urban green areas and call for further research in this direction

    A tool for the quantification of radial neo-vessels in chick chorioallantoic membrane angiogenic assays

    Get PDF
    Angiogenesis, the process of new blood vessels formation, plays a key role in different physiological and pathological conditions and it is considered a promising target for the development of new anti-inflammatory and anti-tumor therapies. Several assays have been developed to mimic the angiogenic process in vitro and in vivo. Here we propose a technique for the quantification of the pro-angiogenic or anti-angiogenic responses induced by different molecules when implanted in vivo on the chick embryo chorioallantoic membrane (CAM). At day 11 of development CAM is completely vascularized and neo-vessels induced by exogenous molecules converge radially to the implant. Our algorithm is an effective and rapid tool to characterize molecules endowed with proor anti-angiogenic effects by means of the quantification of the vessels present in the CAM macroscopic images. Based on conventional and dedicated image morphology tools, the proposed technique is able to discriminate radial from non-radial vessels, excluding the last ones from the count

    β3 Integrin promotes long-lasting activation and polarization of vascular endothelial growth factor receptor 2 by immobilized ligand

    Get PDF
    OBJECTIVE: During neovessel formation, angiogenic growth factors associate with the extracellular matrix. These immobilized factors represent a persistent stimulus for the otherwise quiescent endothelial cells (ECs), driving directional EC migration and proliferation and leading to new blood vessel growth. Vascular endothelial growth factor receptor 2 (VEGFR2) is the main mediator of angiogenesis. Although VEGFR2 signaling has been deeply characterized, little is known about its subcellular localization during neovessel formation. Aim of this study was the characterization and molecular determinants of activated VEGFR2 localization in ECs during neovessel formation in response to matrix-immobilized ligand. APPROACH AND RESULTS: Here we demonstrate that ECs stimulated by extracellular matrix-associated gremlin, a noncanonical VEGFR2 ligand, are polarized and relocate the receptor in close contact with the angiogenic factor-enriched matrix both in vitro and in vivo. GM1 (monosialotetrahexosylganglioside)-positive planar lipid rafts, β3 integrin receptors, and the intracellular signaling transducers focal adhesion kinase and RhoA (Ras homolog gene family, member A) cooperate to promote VEGFR2 long-term polarization and activation. CONCLUSIONS: A ligand anchored to the extracellular matrix induces VEGFR2 polarization in ECs. Long-lasting VEGFR2 relocation is closely dependent on lipid raft integrity and activation of β3 integrin pathway. The study of the endothelial responses to immobilized growth factors may offer insights into the angiogenic process in physiological and pathological conditions, including cancer, and for a better engineering of synthetic tissue scaffolds to blend with the host vasculature

    A long pentraxin-3-derived pentapeptide for the therapy of FGF8b-driven steroid hormone-regulated cancers

    Get PDF
    Fibroblast growth factor-8b (FGF8b) affects the epithelial/stromal compartments of steroid hormone-regulated tumors by exerting an autocrine activity on cancer cells and a paracrine pro-angiogenic function, thus contributing to tumor progression. The FGF8b/FGF receptor (FGFR) system may therefore represent a target for the treatment of steroid hormone-regulated tumors. The soluble pattern recognition receptor long pentraxin-3 (PTX3) binds various FGFs, including FGF2 and FGF8b, thus inhibiting the angiogenic and tumorigenic activity of androgen-regulated tumor cells. Nevertheless, the complex/proteinaceous structure of PTX3 hampers its pharmacological exploitation. In this context, the acetylated pentapeptide Ac-ARPCA-NH2 (ARPCA), corresponding to the N-terminal amino acid sequence PTX3(100-104), was identified as a minimal FGF2-binding peptide able to antagonize the biological activity of FGF2. Here, we demonstrate that ARPCA binds FGF8b and inhibits its capacity to form FGFR1-mediated ternary complexes with heparan sulphate proteoglycans. As a FGF8b antagonist, ARPCA inhibits FGFR1 activation and signalling in endothelial cells, hampering the angiogenic activity exerted in vitro and in vivo by FGF8b. Also, ARPCA suppresses the angiogenic and tumorigenic potential of prototypic androgen/FGF8b-dependent Shionogi 115 mammary carcinoma cells and of androgen/FGF8b/FGF2-dependent TRAMP-C2 prostate cancer cells. In conclusion, ARPCA represents a novel FGF8b antagonist with translational implications for the therapy of steroid hormone-regulated tumor

    Monomeric gremlin is a novel vascular endothelial growth factor receptor-2 antagonist

    Get PDF
    Angiogenesis plays a key role in various physiological and pathological conditions, including inflammation and tumor growth. The bone morphogenetic protein (BMP) antagonist gremlin has been identified as a novel pro-angiogenic factor. Gremlin promotes neovascular responses via a BMP-independent activation of the vascular endothelial growth factor (VEGF) receptor-2 (VEGFR2). BMP antagonists may act as covalent or non-covalent homodimers or in a monomeric form, while VEGFRs ligands are usually dimeric. However, the oligomeric state of gremlin and its role in modulating the biological activity of the protein remain to be elucidated.Here we show that gremlin is expressed in vitro and in vivo both as a monomer and as a covalently linked homodimer. Mutagenesis of amino acid residue Cys141 prevents gremlin dimerization leading to the formation of gremlinC141A monomers. GremlinC141A monomer retains a BMP antagonist activity similar to the wild-type dimer, but is devoid of a significant angiogenic capacity. Notably, we found that gremlinC141A mutant engages VEGFR2 in a non-productive manner, thus acting as receptor antagonist. Accordingly, both gremlinC141A and wild-type monomers inhibit angiogenesis driven by dimeric gremlin or VEGF-A165. Moreover, by acting as a VEGFR2 antagonist, gremlinC141A inhibits the angiogenic and tumorigenic potential of murine breast and prostate cancer cells in vivo.In conclusion, our data show that gremlin exists in multiple forms endowed with specific bioactivities and provide new insights into the molecular bases of gremlin dimerization. Furthermore, we propose gremlin monomer as a new inhibitor of VEGFR2 signalling during tumor growth

    Genetic and molecular characterization of the human osteosarcoma 3AB-OS cancer stem cell line: a possible model for studying osteosarcoma origin and stemness.

    Get PDF
    Finding new treatments targeting cancer stem cells (CSCs) within a tumor seems to be critical to halt cancer and improve patient survival. Osteosarcoma is an aggressive tumor affecting adolescents, for which there is no second-line chemotherapy. Uncovering new molecular mechanisms underlying the development of osteosarcoma and origin of CSCs is crucial to identify new possible therapeutic strategies. Here, we aimed to characterize genetically and molecularly the human osteosarcoma 3AB-OS CSC line, previously selected from MG63 cells and which proved to have both in vitro and in vivo features of CSCs. Classic cytogenetic studies demonstrated that 3AB-OS cells have hypertriploid karyotype with 71–82 chromosomes. By comparing 3AB-OS CSCs to the parental cells, array CGH, Affymetrix microarray, and TaqMan1 Human MicroRNA array analyses identified 49 copy number variations (CNV), 3,512 dysregulated genes and 189 differentially expressed miRNAs. Some of the chromosomal abnormalities and mRNA/miRNA expression profiles appeared to be congruent with those reported in human osteosarcomas. Bioinformatic analyses selected 196 genes and 46 anticorrelated miRNAs involved in carcinogenesis and stemness. For the first time, a predictive network is also described for two miRNA family (let-7/98 and miR-29a,b,c) and their anticorrelated mRNAs (MSTN, CCND2, Lin28B, MEST, HMGA2, and GHR), which may represent new biomarkers for osteosarcoma and may pave the way for the identification of new potential therapeutic targets

    Claudin3 is localized outside the tight junctions in human carcinomas

    Get PDF
    Claudin3 is an integral component of the tight junction proteins in polarized epithelia. The expression of claudin3 was assessed in epithelial-derived tumors using Oncomine database. To determine the gene alteration during carcinogenesis, copy number alterations and mutations of claudin3 were evaluated using cBioPortal database. Claudin3 is overexpressed in several tumors including gynecological, bladder, breast and prostate carcinomas. 38% of the 163 evaluated studies show mutations and/or amplification of claudin3. 3D reconstruction of tissue samples following immunofluorescence analysis clearly demonstrated that, unlike in healthy tissues, claudin3 is mislocalized and unengaged in the formation of tight junction in tumor samples. These data strongly support the evaluation of unengaged claudin3 as a target for the development of novel diagnostic probes, optical approaches for real time detection of tumoral tissues during surgery, and target therapeutic drugs

    The Evolving Scenario in the Assessment of Radiological Response for Hepatocellular Carcinoma in the Era of Immunotherapy: Strengths and Weaknesses of Surrogate Endpoints

    Get PDF
    Hepatocellular carcinoma (HCC) is a challenging malignancy characterised by clinical and biological heterogeneity, independent of the stage. Despite the application of surveillance programs, a substantial proportion of patients are diagnosed at advanced stages when curative treatments are no longer available. The landscape of systemic therapies has been rapidly growing over the last decade, and the advent of immune-checkpoint inhibitors (ICIs) has changed the paradigm of systemic treatments. The coexistence of the tumour with underlying cirrhosis exposes patients with HCC to competing events related to tumour progression and/or hepatic decompensation. Therefore, it is relevant to adopt proper clinical endpoints to assess the extent of treatment benefit. While overall survival (OS) is the most accepted endpoint for phase III randomised controlled trials (RCTs) and drug approval, it is affected by many limitations. To overcome these limits, several clinical and radiological outcomes have been used. For instance, progression-free survival (PFS) is a useful endpoint to evaluate the benefit of sequential treatments, since it is not influenced by post-progression treatments, unlike OS. Moreover, radiological endpoints such as time to progression (TTP) and objective response rate (ORR) are frequently adopted. Nevertheless, the surrogacy between these endpoints and OS in the setting of unresectable HCC (uHCC) remains uncertain. Since most of the surrogate endpoints are radiology-based (e.g., PFS, TTP, ORR), the use of standardised tools is crucial for the evaluation of radiological response. The optimal way to assess the radiological response has been widely debated, and many criteria have been proposed over the years. Furthermore, none of the criteria have been validated for immunotherapy in advanced HCC. The coexistence of the underlying chronic liver disease and the access to several lines of treatments highlight the urgent need to capture early clinical benefit and the need for standardised radiological criteria to assess cancer response when using ICIs in mono- or combination therapies. Here, we review the most commonly used clinical and radiological endpoints for trial design, as well as their surrogacy with OS. We also review the criteria for radiological response to treatments for HCC, analysing the major issues and the potential future perspectives
    • …
    corecore