30 research outputs found

    Measurements Methods for the Development of MicroRNA-Based Tests for Cancer Diagnosis.

    Get PDF
    Studies investigating microRNAs as potential biomarkers for cancer, immune-related diseases, or cardiac pathogenic diseases, among others, have exponentially increased in the last years. In particular, altered expression of specific miRNAs correlates with the occurrence of several diseases, making these molecules potential molecular tools for non-invasive diagnosis, prognosis, and response to therapy. Nonetheless, microRNAs are not in clinical use yet, due to inconsistencies in the literature regarding the specific miRNAs identified as biomarkers for a specific disease, which in turn can be attributed to several reasons, including lack of assay standardization and reproducibility. Technological limitations in circulating microRNAs measurement have been, to date, the biggest challenge for using these molecules in clinical settings. In this review we will discuss pre-analytical, analytical, and post-analytical challenges to address the potential technical biases and patient-related parameters that can have an influence and should be improved to translate miRNA biomarkers to the clinical stage. Moreover, we will describe the currently available methods for circulating miRNA expression profiling and measurement, underlining their advantages and potential pitfalls

    Preferential silencing of a common dominant rhodopsin mutation does not inhibit retinal degeneration in a transgenic model

    Get PDF
    Autosomal dominant retinitis pigmentosa caused by the frequent rhodopsin P23H mutation is characterized by progressive photoreceptor cell death eventually leading to blindness and for which no therapies are available. Considering the gain-of-function effect exerted by the P23H mutation, strategies aimed at silencing the expression of the mutated allele, like RNA interference, are desirable. We have designed small interfering RNAs (siRNA) to silence specifically the P23H rhodopsin allele expressed by a transgenic rat model of the disease. We have selected in vitro one siRNA and generated an adeno-associated viral (AAV) vector expressing the short hairpin RNA (shRNA) based on the selected siRNA. In vitro the shRNA significantly inhibits the expression of the P23H but not the wild-type rhodopsin allele. Subretinal administration of the AAV2/5 vector encoding the shRNA in P23H transgenic rats results in inhibition of rhodopsin P23H expression that is not able to prevent or block photoreceptor degeneration. Since rhodopsin is the most abundant rod photoreceptor protein, systems resulting in more robust shRNA expression in the retina may be required to achieve therapeutic efficacy in vivo

    712. AAV-Mediated Allele-Specific RNA Interference of a Common Dominant Rhodopsin Mutation Causing Retinitis Pigmentosa

    Get PDF
    Inherited retinal degenerations are a group of clinically and genetically heterogeneous diseases characterized by progressive photoreceptor cell death eventually leading to blindness and for which no therapies are available. Mutations in the rhodopsin gene are common causes of autosomal dominant retinitis pigmentosa (RP). Among them the P23H amino-acid substitution represents the most frequent rhodopsin mutation in US. Given the gain of function effect exerted by the P23H mutation, strategies aimed at silencing the expression of the mutated allele, like RNA interference, are desirable

    Selection of reference genes is critical for miRNA expression analysis in human cardiac tissue. A focus on atrial fibrillation

    Get PDF
    MicroRNAs (miRNAs) are emerging as key regulators of complex biological processes in several cardiovascular diseases, including atrial fibrillation (AF). Reverse transcription-quantitative polymerase chain reaction is a powerful technique to quantitatively assess miRNA expression profile, but reliable results depend on proper data normalization by suitable reference genes. Despite the increasing number of studies assessing miRNAs in cardiac disease, no consensus on the best reference genes has been reached. This work aims to assess reference genes stability in human cardiac tissue with a focus on AF investigation. We evaluated the stability of five reference genes (U6, SNORD48, SNORD44, miR-16, and 5S) in atrial tissue samples from eighteen cardiac-surgery patients in sinus rhythm and AF. Stability was quantified by combining BestKeeper, delta-Cq, GeNorm, and NormFinder statistical tools. All methods assessed SNORD48 as the best and U6 as the worst reference gene. Applications of different normalization strategies significantly impacted miRNA expression profiles in the study population. Our results point out the necessity of a consensus on data normalization in AF studies to avoid the emergence of divergent biological conclusions

    heterogeneity of large cell carcinoma of the lung an immunophenotypic and mirna based analysis

    Get PDF
    Large cell carcinomas (LCCs) of the lung are heterogeneous and may be of different cell lineages. We analyzed 56 surgically resected lung tumors classified as LCC on the basis of pure morphologic grounds, using a panel of immunophenotypic markers (adenocarcinoma [ADC]-specific, thyroid transcription factor-1, cytokeratin 7, and napsin A; squamous cell carcinoma [SQCC]–specific, p63, cytokeratin 5, desmocollin 3, and Δnp63) and the quantitative analysis of microRNA-205 (microRNA sample score [mRSS]). Based on immunoprofiles 19 (34%) of the cases were reclassified as ADC and 14 (25%) as SQCC; 23 (41%) of the cases were unclassifiable. Of these 23 cases, 18 were classified as ADC and 5 as SQCC according to the mRSS. Our data show that an extended panel of immunohistochemical markers can reclassify around 60% of LCCs as ADC or SQCC. However, a relevant percentage of LCCs may escape convincing immunohistochemical classification, and mRSS could be used for further typing, but its clinical relevance needs further confirmation. Large cell carcinoma (LCC) of the lung is 1 of 4 major histopathologic tumor subtypes recognized by current classifications of lung tumors. However, although squamous cell carcinoma (SQCC), adenocarcinoma (ADC), and small cell carcinoma are well-defined entities with typical morphologic, immunophenotypic, and molecular features, LCCs, with the exception of the rare neuroendocrine, rhabdoid, basaloid, and lymphoepithelioma-like subtypes, are defined as poorly differentiated non–small cell tumors lacking features of ADC and SQCC. Therefore, the term LCC has frequently and improperly been used as a synonym of undifferentiated non–small cell lung carcinoma (NSCLC) and has been used as a "wastebasket" for tumors lacking a definite morphologic pattern. Studies show that, by using ancillary techniques, a relevant percentage of LCCs could be reclassified as SQCC or ADC. Gene profiling shows that most LCCs have profiles quite similar to ADC or SQCC. 1-3 Similarly, by using appropriate immunohistochemical stains, almost two thirds of LCCs can be reclassified as poorly differentiated ADC or SQCC. 4,5 These studies have profound clinical relevance because rendering a diagnosis of LCC may represent a challenge for oncologists who need accurate subtyping of lung cancers to provide patients with optimal targeted chemotherapeutic agents, showing different efficacy with specific NSCLC categories (usually effective for ADC and not for others). 6,

    A loxP-containing pol II promoter for RNA interference is reversibly regulated by Cre recombinase

    No full text
    Several DNA vectors for RNA interference in mammalian cells have been described. These express a short hairpin RNA (shRNA) that is subsequently processed into mature small interfering RNAs (siRNAs). We previously developed the siRNA-expressing vector psiUx based on the polll promoter of the Ul small nuclear RNA gene. Here we describe the conversion of such construct into an inducible system. The starting construct psiUStuff contains a loxP-Stuffer-loxP cassette just upstream the transcription initiation site and does not express the shRNA until the two canonical loxP sites undergo Cre-mediated recombination. If sustained expression of the recombinase is maintained, transcription is repressed and shRNA synthesis is abolished. Therefore, in our system the Cre recombinase exhibits the dual function of activator and repressor allowing the on/off regulation of siRNAs production. Using a Cre recombinase whose transcription is under the control of a tetOn system, we show the temporally controlled expression of an shRNA directed towards the lamin A/C mRNA, as well as the regulated knockdown of its target. ©2005 Landes Bioscience

    A cross-platform comparison of affymetrix and Agilent microarrays reveals discordant miRNA expression in lung tumors of c-Raf transgenic mice.

    Get PDF
    Non-coding RNAs play major roles in the translational control of gene expression. In order to identify disease-associated miRNAs in precursor lesions of lung cancer, RNA extracts from lungs of either c-Raf transgenic or wild-type (WT) mice were hybridized to the Agilent and Affymetrix miRNA microarray platforms, respectively. This resulted in the detection of a range of miRNAs varying between 111 and 267, depending on the presence or absence of the transgene, on the gender, and on the platform used. Importantly, when the two platforms were compared, only 11-16% of the 586 overlapping genes were commonly detected. With the Agilent microarray, seven miRNAs were identified as significantly regulated, of which three were selectively up-regulated in male transgenic mice. Much to our surprise, when the same samples were analyzed with the Affymetrix platform, only two miRNAs were identified as significantly regulated. Quantitative PCR performed with lung RNA extracts from WT and transgenic mice confirmed only partially the differential expression of significant regulated miRNAs and established that the Agilent platform failed to detect miR-433. Finally, bioinformatic analyses predicted a total of 152 mouse genes as targets of the regulated miRNAs of which 4 and 11 genes were significantly regulated at the mRNA level, respectively in laser micro-dissected lung dysplasia and lung adenocarcinomas of c-Raf transgenic mice. Furthermore, for many of the predicted mouse target genes expression of the coded protein was also repressed in human lung cancer when the publically available database of the Human Protein Atlas was analyzed, thus supporting the clinical significance of our findings. In conclusion, a significant difference in a cross-platform comparison was observed that will have important implications for research into miRNAs

    Double-target Antisense U1snRNAs Correct Mis-splicing Due to c.639+861C>T and c.639+919G>A GLA Deep Intronic Mutations

    No full text
    Fabry disease is a rare X-linked lysosomal storage disorder caused by deficiency of the α-galactosidase A (α-Gal A) enzyme, which is encoded by the GLA gene. GLA transcription in humans produces a major mRNA encoding α-Gal A and a minor mRNA of unknown function, which retains a 57-nucleotide-long cryptic exon between exons 4 and 5, bearing a premature termination codon. NM_000169.2:c.639+861C>T and NM_000169.2:c.639+919G>A GLA deep intronic mutations have been described to cause Fabry disease by inducing overexpression of the alternatively spliced mRNA, along with a dramatic decrease in the major one. Here, we built a wild-type GLA minigene and two minigenes that carry mutations c.639+861C>T and c.639+919G>A. Once transfected into cells, the minigenes recapitulate the molecular patterns observed in patients, at the mRNA, protein, and enzymatic level. We constructed a set of specific double-target U1asRNAs to correct c.639+861C>T and c.639+919G>A GLA mutations. Efficacy of U1asRNAs in inducing the skipping of the cryptic exon was evaluated upon their transient co-transfection with the minigenes in COS-1 cells, by real-time polymerase chain reaction (PCR), western blot analysis, and α-Gal A enzyme assay. We identified a set of U1asRNAs that efficiently restored α-Gal A enzyme activity and the correct splicing pathways in reporter minigenes. We also identified a unique U1asRNA correcting both mutations as efficently as the mutation-specific U1asRNAs. Our study proves that an exon skipping-based approach recovering α-Gal A activity in the c.639+861C>T and c.639+919G>A GLA mutations is active
    corecore