26,857 research outputs found
Metallicity of high stellar mass galaxies with signs of merger events
We focus on an analysis of galaxies of high stellar mass and low metallicity.
We cross-correlated the Millenium Galaxy Catalogue (MGC) and the Sloan Digital
Sky Survey (SDSS) galaxy catalogue to provide a sample of MGC objects with high
resolution imaging and both spectroscopic and photometric information available
in the SDSS database. For each galaxy in our sample, we conducted a systematic
morphological analysis by visual inspection of MGC images using their
luminosity contours. The galaxies are classified as either disturbed or
undisturbed objects. We divide the sample into three metallicity regions,
within wich we compare the properties of disturbed and undisturbed objects. We
find that the fraction of galaxies that are strongly disturbed, indicative of
being merger remnants, is higher when lower metallicity objects are considered.
The three bins analysed consist of approximatively 15%, 20%, and 50% disturbed
galaxies (for high, medium, and low metallicity, respectively). Moreover, the
ratio of the disturbed to undisturbed relative distributions of the population
age indicator, Dn(4000), in the low metallicity bin, indicates that the
disturbed objects have substantially younger stellar populations than their
undisturbed counterparts. In addition, we find that an analysis of colour
distributions provides similar results, showing that low metallicity galaxies
with a disturbed morphology are bluer than those that are undisturbed. The
bluer colours and younger populations of the low metallicity, morphologically
disturbed objects suggest that they have experienced a recent merger with an
associated enhanced star formation rate. [abridged]Comment: Astronomy & Astrophysics, in pres
Polynomial Relations in the Centre of U_q(sl(N))
When the parameter of deformation q is a m-th root of unity, the centre of
U_q(sl(N))$ contains, besides the usual q-deformed Casimirs, a set of new
generators, which are basically the m-th powers of all the Cartan generators of
U_q(sl(N)). All these central elements are however not independent. In this
letter, generalising the well-known case of U_q(sl(2)), we explicitly write
polynomial relations satisfied by the generators of the centre. Application to
the parametrization of irreducible representations and to fusion rules are
sketched.Comment: 8 pages, minor TeXnical revision to allow automatic TeXin
Bromophenyl functionalization of carbon nanotubes : an ab initio study
We study the thermodynamics of bromophenyl functionalization of carbon
nanotubes with respect to diameter and metallic/insulating character using
density-functional theory (DFT). On one hand, we show that the activation
energy for the grafting of a bromophenyl molecule onto a semiconducting zigzag
nanotube ranges from 0.73 eV to 0.76 eV without any clear trend with respect to
diameter within numerical accuracy. On the other hand, the binding energy of a
single bromophenyl molecule shows a clear diameter dependence and ranges from
1.51 eV for a (8,0) zigzag nanotube to 0.83 eV for a (20,0) zigzag nanotube.
This is in part explained by the transition from sp2 to sp3 bonding occurring
to a carbon atom of a nanotube when a phenyl is grafted to it and the fact that
smaller nanotubes are closer to a sp3 hybridization than larger ones due to
increased curvature. Since a second bromophenyl unit can attach without energy
barrier next to an isolated grafted unit, they are assumed to exist in pairs.
The para configuration is found to be favored for the pairs and their binding
energy decreases with increasing diameter, ranging from 4.34 eV for a (7,0)
nanotube to 2.27 eV for a (29,0) nanotube. An analytic form for this radius
dependence is derived using a tight binding hamiltonian and first order
perturbation theory. The 1/R^2 dependance obtained (where R is the nanotube
radius) is verified by our DFT results within numerical accuracy. Finally,
metallic nanotubes are found to be more reactive than semiconducting nanotubes,
a feature that can be explained by a non-zero density of states at the Fermi
level for metallic nanotubes.Comment: 7 pages, 5 figures and 3 table
Electrical transport and low-temperature scanning tunneling microscopy of microsoldered graphene
Using the recently developed technique of microsoldering, we perform a
systematic transport study of the influence of PMMA on graphene flakes
revealing a doping effect of up to 3.8x10^12 1/cm^2, but a negligible influence
on mobility and gate voltage induced hysteresis. Moreover, we show that the
microsoldered graphene is free of contamination and exhibits a very similar
intrinsic rippling as has been found for lithographically contacted flakes.
Finally, we demonstrate a current induced closing of the previously found
phonon gap appearing in scanning tunneling spectroscopy experiments, strongly
non-linear features at higher bias probably caused by vibrations of the flake
and a B-field induced double peak attributed to the 0.Landau level of graphene.Comment: 8 pages, 3 figure
A Semi-classical calculus of correlations
The method of passive imaging in seismology has been developped recently in
order to image the earth crust from recordings of the seismic noise. This
method is founded on the computation of correlations of the seismic noise. In
this paper, we give an explicit formula for this correlation in the
"semi-classical" regime. In order to do that, we define the power spectrum of a
random field as the ensemble average of its Wigner measure, this allows
phase-space computations: the pseudo-differential calculus and the ray theory.
This way, we get a formula for the correlation of the seismic noise in the
semi-classcial regime with a source noise which can be localized and non
homogeneous. After that, we show how the use of surface guided waves allows to
image the earth crust.Comment: To appear in a special issue "Imaging and Monitoring with Seismic
Noise" of the series "Comptes Rendus G\'eosciences", from the French
"Acad\'emie des sciences
On arithmetic detection of grey pulses with application to Hawking radiation
Micron-sized black holes do not necessarily have a constant horizon
temperature distribution. The black hole remote-sensing problem means to find
out the `surface' temperature distribution of a small black hole from the
spectral measurement of its (Hawking) grey pulse. This problem has been
previously considered by Rosu, who used Chen's modified Moebius inverse
transform. Here, we hint on a Ramanujan generalization of Chen's modified
Moebius inverse transform that may be considered as a special wavelet
processing of the remote-sensed grey signal coming from a black hole or any
other distant grey sourceComment: 5 pages, published versio
The Mauritian Truth and Justice Commission: legitimacy, political negotiation and the consequences of slavery
We examine the origins, processes and outcomes of the Mauritian Truth and Justice Commissionâs (MTJC), examination of slavery, indentured labour and their contemporary effects. It has not been considered a success by any commentator. We therefore ask how far James L. Gibsonâs application of legitimacy theory to âTruth Commissionsâ has purchase in this context and whether it was cynically motivated. We use MTJC documentation, extensive interviews and newspaper reports to show that Gibsonâs theory provides insight into MTJC outcomes while demonstrating that politico-economic power structures were crucial. Conversely, the MTJC does not sit easily in Van Zylâs âcynical operationâ category
Searching for Hyperbolicity
This is an expository paper, based on by a talk given at the AWM Research
Symposium 2017. It is intended as a gentle introduction to geometric group
theory with a focus on the notion of hyperbolicity, a theme that has inspired
the field from its inception to current-day research
Non-degenerate, three-wave mixing with the Josephson ring modulator
The Josephson ring modulator (JRM) is a device, based on Josephson tunnel
junctions, capable of performing non-degenerate mixing in the microwave regime
without losses. The generic scattering matrix of the device is calculated by
solving coupled quantum Langevin equations. Its form shows that the device can
achieve quantum-limited noise performance both as an amplifier and a mixer.
Fundamental limitations on simultaneous optimization of performance metrics
like gain, bandwidth and dynamic range (including the effect of pump depletion)
are discussed. We also present three possible integrations of the JRM as the
active medium in a different electromagnetic environment. The resulting
circuits, named Josephson parametric converters (JPC), are discussed in detail,
and experimental data on their dynamic range are found to be in good agreement
with theoretical predictions. We also discuss future prospects and requisite
optimization of JPC as a preamplifier for qubit readout applications.Comment: 21 pages, 16 figures, 4 table
Ising metamagnets in thin film geometry: equilibrium properties
Artificial antiferromagnets and synthetic metamagnets have attracted much
attention recently due to their potential for many different applications.
Under some simplifying assumptions these systems can be modeled by thin Ising
metamagnetic films. In this paper we study, using both the Wang/Landau scheme
and importance sampling Monte Carlo simulations, the equilibrium properties of
these films. On the one hand we discuss the microcanonical density of states
and its prominent features. On the other we analyze canonically various global
and layer quantities. We obtain the phase diagram of thin Ising metamagnets as
a function of temperature and external magnetic field. Whereas the phase
diagram of the bulk system only exhibits one phase transition between the
antiferromagnetic and paramagnetic phases, the phase diagram of thin Ising
metamagnets includes an additional intermediate phase where one of the surface
layers has aligned itself with the direction of the applied magnetic field.
This additional phase transition is discontinuous and ends in a critical end
point. Consequently, it is possible to gradually go from the antiferromagnetic
phase to the intermediate phase without passing through a phase transition.Comment: 8 figures, accepted for publication in Physical Review
- âŠ