120 research outputs found

    Collective effects at frictional interfaces

    Get PDF
    We discuss the role of the long-range elastic interaction between the contacts inside an inhomogeneous frictional interface. The interaction produces a characteristic elastic correlation length λc=a2E/kc\lambda_c = a^2 E / k_c (where aa is the distance between the contacts, kck_c is the elastic constant of a contact, and EE is the Young modulus of the sliding body), below which the slider may be considered as a rigid body. The strong inter-contact interaction leads to a narrowing of the effective threshold distribution for contact breaking and enhances the chances for an elastic instability to appear. Above the correlation length, r>λcr > \lambda_c, the interaction leads to screening of local perturbations in the interface, or to appearance of collective modes --- frictional cracks propagating as solitary waves

    Critical review on biofilm methods

    Get PDF
    Biofilms are widespread in nature and constitute an important strategy implemented by microorganisms to survive in sometimes harsh environmental conditions. They can be beneficial or have a negative impact particularly when formed in industrial settings or on medical devices. As such, research into the formation and elimination of biofilms is important for many disciplines. Several new methodologies have been recently developed for, or adapted to, biofilm studies that have contributed to deeper knowledge on biofilm physiology, structure and composition. In this review, traditional and cutting-edge methods to study biofilm biomass, viability, structure, composition and physiology are addressed. Moreover, as there is a lack of consensus among the diversity of techniques used to grow and study biofilms. This review intends to remedy this, by giving a critical perspective, highlighting the advantages and limitations of several methods. Accordingly, this review aims at helping scientists in finding the most appropriate and up-to-date methods to study their biofilms.The authors would like to acknowledge the support from the EU COST Action BacFoodNet FA1202

    « Le présent du monde »: Perspectives sur le journal d’écrivain du XIXe au XXIe siècle

    No full text
    International audienceSince its appearance in the literary field at the end of the nineteenth century, the writer’s journal has developed on the fringes of other genres, in an unresolved tension between sincerity and artificiality. The form has been the site of various experiments and, by the end of the twentieth century, had become a mode of self-narrative. Without neglecting these aspects, contemporary journals strive to transcribe everyday life, to enhance the perceptibility of the passage of time—to ultimately weave “a sort of novelistic underside.”Depuis son apparition dans le champ littéraire, à la fin du xixe siècle, le journal d’écrivain s’est développé en marge des autres genres, dans une tension irrésolue entre sincérité et facticité. La forme a servi à diverses expérimentations et est devenue, à la fin du xxe siècle, un mode de récit de soi. Sans négliger ces dimensions, les journaux contemporains s’attachent à transcrire la vie ordinaire, à rendre sensible le passage du temps – pour finalement tramer « une sorte d'envers romanesque »

    The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins

    No full text
    International audienc

    Extraction and Preparation of Listeria monocytogenes Subproteomes for Mass Spectrometry Analysis

    No full text
    International audienceProteomics has become an essential tool to answer biologists' questions. For bacteriologists, the proteome of bacteria is much less complex than that of eukaryotic organisms. However, not all the different cell "compartments" are easily accessible, and the analysis of cell envelope proteins is particularly challenging. For the Gram-positive bacterium Listeria monocytogenes, one of the main foodborne pathogen microorganisms, the study of surface proteins is crucial to better understand the mechanisms of pathogenicity, as well as adaptation/resistance to and persistence in hostile environments. The evolution of proteomic techniques, and particularly the possibility of separating and analyzing complex protein samples by off-gel (LC-MS/MS) versus in-gel (two-dimensional electrophoresis) approach, has opened the doors to new extraction and preparation methods to target the different subproteomes. Here, we describe three procedures to prepare and analyze intracellular, exocellular, and cell surface proteins: (1) the cell fractionation, based on cell broken and separation of protein subfractions by differential centrifugation; (2) the biotinylation, based on the labeling of cell surface proteins and their selective extraction; and (3) the enzymatic shaving by the action of trypsin on intact cells. These complementary methods allow to encompass all L. monocytogenes subproteomes for general profiling or target studies and could be applicable to other Gram-positive bacteria

    Desiccation: An environmental and food industry stress that bacteria commonly face

    No full text
    International audienceWater is essential for all living organisms, for animals as well as for plants and micro-organisms. For these latter, the presence of water or a humid environment with a high air relative humidity (RH) is necessary for their survival and growth. Thus, variations in the availability of water or in the air relative humidity constitute widespread environmental stresses which challenge microorganisms, and especially bacteria. Indeed, in their direct environment, bacteria are often faced with conditions that remove cellbound water through air-drying of the atmosphere. Bacterial cells are subject to daily or seasonal environmental variations, sometimes going through periods of severe desiccation. This is also the case in the food industry, where air dehumidification treatments are applied after the daily cleaning-disinfection procedures. In plants producing low-water activity products, it is also usual to significantly reduce or eliminate water usage. Periodic desiccation exposure affects bacteria viability and so they require strategies to persist. Negative effects of desiccation are wide ranging and include direct cellular damage but also changes in the biochemical and biophysical properties of cells for which planktonic cells are more exposed than cells in biofilm. Understanding the mechanisms of desiccation adaptation and tolerance has a biological and biotechnological interest. This review gives an overview of the factors influencing desiccation tolerance and the biological mechanisms involved in this stress response

    Increased adhesion of listeria monocytogenes strains to abiotic surfaces under cold stress

    No full text
    International audienceFood contamination by Listeria monocytogenes remains a major concern for some food processing chains, particularly for ready-to-eat foods, including processed foods. Bacterial adhesion on both biotic and abiotic surfaces is a source of contamination by pathogens that have become more tolerant or even persistent in food processing environments, including in the presence of adverse conditions such as cold and dehydration. The most distinct challenge that bacteria confront upon entry into food processing environments is the sudden downshift in temperature, and the resulting phenotypic effects are of interest. Crystal violet staining and the BioFilm Ring Test (R) were applied to assess the adhesion and biofilm formation of 22 listerial strains from different serogroups and origins under cold-stressed and cold-adapted conditions. The physicochemical properties of the bacterial surface were studied using the microbial adhesion to solvent technique. Scanning electron microscopy was performed to visualize cell morphology and biofilm structure. The results showed that adhesion to stainless-steel and polystyrene was increased by cold stress, whereas cold-adapted cells remained primarily in planktonic form. Bacterial cell surfaces exhibited electron-donating properties regardless of incubation temperature and became more hydrophilic as temperature decreased from 37 to 4 degrees C. Moreover, the adhesion of cells grown at 4 degrees C correlated with affinity for ethyl acetate, indicating the role of cell surface properties in adhesion
    • …
    corecore