80 research outputs found
A cluster randomized trial comparing deltamethrin and bendiocarb as insecticides for indoor residual spraying to control malaria on Bioko Island, Equatorial Guinea.
BACKGROUND: Indoor residual spraying (IRS) has been used on Bioko for malaria control since 2004. In 2013 the insecticide was changed from bendiocarb to deltamethrin. Shortly after this change, there was a marked increase in malaria prevalence on the island. This trial was carried out to compare the effectiveness of bendiocarb and deltamethrin for use in IRS on Bioko. METHODS: Twenty-four clusters of houses were randomized to receive IRS with either bendiocarb or deltamethrin. Approximately 3 months after the intervention, the prevalence of malaria and levels of haemoglobin were measured in children aged 2-14 years in each cluster. RESULTS: Prevalence of malaria in 2-14 year olds was lower in the bendiocarb arm (16.8, 95 % CI 11.1-24.7, N = 1374) than in the deltamethrin arm (23.2, 95 % CI 16.0-32.3, N = 1330) but this difference was not significant (p = 0.390), even after adjusting for covariates (p = 0.119). Mean haemoglobin in children was marginally higher in the bendiocarb clusters (11.6 g/dl, 95 % CI 11.5-11.8, N = 1326) than in the deltamethrin clusters (11.5 g/dl, 95 % CI 11.3-11.7, N = 1329). This difference was borderline significant after adjusting for covariates (p = 0.049). CONCLUSIONS: The results are suggestive of bendiocarb being more effective at preventing malaria on Bioko although evidence for this was weak. The results are likely due to the fact that local vectors remain fully susceptible to bendiocarb whereas subsequent tests have shown resistance to deltamethrin
Clarification of anomalies in the application of a 2La molecular karyotyping method for the malaria vector Anopheles gambiae
BACKGROUND:Chromosomal inversions have been considered to be potentially important barriers to gene flow in many groups of animals through their effect on recombination suppression in heterokaryotypic individuals. Inversions can also enhance local adaptation in different groups of organisms and may often represent species-specific differences among closely related taxa. We conducted a study to characterize the 2La inversion karyotypes of An. gambiae sensu stricto mosquitoes sampled from the Kilombero Valley (Tanzania) using a newly designed PCR assay.RESULTS:We frequently encountered a (687 bp) fragment which was only present in the Kilombero Valley populations. Laboratory crossing between An. gambiae s.s. from Njage (Tanzania) and Kisumu (Western Kenya) populations resulted in F1 offspring carrying the observed fragment. Karyotype analysis did not indicate differences in 2La region chromosome morphology between individuals carrying the PCR fragments, the 207 bp fragment, or the 687 bp fragement.CONCLUSION:The observed insertion/deletion polymorphism within the region amplified by the 2La PCR diagnostic test may confound the interpretation of this assay and should be well considered in order to maintain an acceptable level of reliability in studies using this assay to describe the distribution and frequency of the 2La inversion among natural populations of An. gambiae s.
Effective population size of Culex quinquefasciatus under insecticide-based vector management and following Hurricane Harvey in Harris County, Texas
Introduction:Culex quinquefasciatus is a mosquito species of significant public health importance due to its ability to transmit multiple pathogens that can cause mosquito-borne diseases, such as West Nile fever and St. Louis encephalitis. In Harris County, Texas, Cx. quinquefasciatus is a common vector species and is subjected to insecticide-based management by the Harris County Public Health Department. However, insecticide resistance in mosquitoes has increased rapidly worldwide and raises concerns about maintaining the effectiveness of vector control approaches. This concern is highly relevant in Texas, with its humid subtropical climate along the Gulf Coast that provides suitable habitat for Cx. quinquefasciatus and other mosquito species that are known disease vectors. Therefore, there is an urgent and ongoing need to monitor the effectiveness of current vector control programs.Methods: In this study, we evaluated the impact of vector control approaches by estimating the effective population size of Cx. quinquefasciatus in Harris County. We applied Approximate Bayesian Computation to microsatellite data to estimate effective population size. We collected Cx. quinquefasciatus samples from two mosquito control operation areas; 415 and 802, during routine vector monitoring in 2016 and 2017. No county mosquito control operations were applied at area 415 in 2016 and 2017, whereas extensive adulticide spraying operations were in effect at area 802 during the summer of 2016. We collected data for eighteen microsatellite markers for 713 and 723 mosquitoes at eight timepoints from 2016 to 2017 in areas 415 and 802, respectively. We also investigated the impact of Hurricane Harvey’s landfall in the Houston area in August of 2017 on Cx. quinquefasciatus population fluctuation.Results: We found that the bottleneck scenario was the most probable historical scenario describing the impact of the winter season at area 415 and area 802, with the highest posterior probability of 0.9167 and 0.4966, respectively. We also detected an expansion event following Hurricane Harvey at area 802, showing a 3.03-fold increase in 2017.Discussion: Although we did not detect significant effects of vector control interventions, we found considerable influences of the winter season and a major hurricane on the effective population size of Cx. quinquefasciatus. The fluctuations in effective population size in both areas showed a significant seasonal pattern. Additionally, the significant population expansion following Hurricane Harvey in 2017 supports the necessity for post-hurricane vector-control interventions
High Levels of Genetic Differentiation between Ugandan Glossina fuscipes fuscipes Populations Separated by Lake Kyoga
The two types of sleeping sickness in West and East Africa are markedly distinct, require different treatments, and are caused by different parasites. The only country where both parasites are present is Uganda, where they are separated by a narrow 160 km disease-free belt. Because there is no restriction on the movement of humans and animals between the two disease zones, this separation is puzzling. We asked whether this disjunct distribution can be explained by variation within the tsetse fly that is largely responsible for transmitting both diseases in Uganda, Glossina fuscipes fuscipes. We therefore examined whether this tsetse subspecies is genetically uniform across Uganda. Our results indicate that G. f. fusicipes is not genetically different between the two disease zones, but there are clear genetic differences between northern and southern populations, which are separated by Lake Kyoga. Therefore, it is unlikely that variation in the tsetse fly determines the distribution of the two parasites. This implies that the two diseases may fuse in the near future, which would greatly complicate diagnosis and treatment of sleeping sickness in any potential area of overlap
Increased Biting Rate of Insecticide-Resistant Culex Mosquitoes and Community Adherence to IRS for Malaria Control in Urban Malabo, Bioko Island, Equatorial Guinea.
Sustaining high levels of indoor residual spraying (IRS) coverage (≥85%) for community protection against malaria remains a challenge for IRS campaigns. We examined biting rates and insecticide resistance in Culex species and Anopheles gambiae s.l., and their potential effect on community adherence to IRS. The average IRS coverage in urban Malabo between 2015 and 2017 remained at 80%. Culex biting rate increased 6.0-fold (P < 0.001) between 2014 and 2017, reaching 8.08 bites per person per night, whereas that of An. gambiae s.l. remained steady at around 0.68. Although An. gambiae s.l. was susceptible to carbamates and organophosphates insecticides, Culex spp. were phenotypically resistant to all four main classes of WHO-recommended IRS insecticides. Similarly, the residual activity of the organophosphate insecticide used since 2017, ACTELLIC 300CS, was 8 mo for An. gambiae s.l., but was almost absent against Culex for 2 mo post-spray. A survey conducted in 2018 within urban Malabo indicated that 77.0% of respondents related IRS as means of protection against mosquito bites, but only 3.2% knew that only Anopheles mosquitoes transmit malaria. Therefore, the increasing biting rates of culicines in urban Malabo, and their resistance to all IRS insecticides, is raising concern that a growing number of people may refuse to participate in IRS as result of its perceived failure in controlling mosquitoes. Although this is not yet the case on Bioko Island, communication strategies need refining to sensitize communities about the effectiveness of IRS in controlling malaria vectors in the midst of insecticide resistance in nonmalaria vector mosquitoes
Light traps fail to estimate reliable malaria mosquito biting rates on Bioko Island, Equatorial Guinea
BACKGROUND: The human biting rate (HBR), an important parameter for assessing malaria transmission and evaluating vector control interventions, is commonly estimated by human landing collections (HLC). Although intense efforts have been made to find alternative non-exposure mosquito collection methods, HLC remains the standard for providing reliable and consistent HBRs. The aim of this study was to assess the relationship between human landing and light trap collections (LTC), in an attempt to estimate operationally feasible conversion factors between the two. The study was conducted as part of the operational research component of the Bioko Island Malaria Control Project (BIMCP), Equatorial Guinea. METHODS: Malaria mosquitoes were collected indoors and outdoors by HLCs and LTCs in three villages on Bioko Island, Equatorial Guinea during five bimonthly collections in 2009. Indoor light traps were suspended adjacent to occupied long-lasting, insecticide-treated bed nets. Outdoor light traps were placed close to the outer wall under the roof of the collection house. Collected specimens were subjected to DNA extraction and diagnostic PCR to identify species within the Anopheles gambiae complex. Data were analysed by simple regression of log-transformed values and by Bayesian regression analysis. RESULTS: There was a poor correlation between the two collection methods. Results varied by location, venue, month, house, but also by the statistical method used. The more robust Bayesian analyses indicated non-linear relationships and relative sampling efficiencies being density dependent for the indoor collections, implying that straight-forward and simple conversion factors could not be calculated for any of the locations. Outdoor LTC:HLC relationships were weak, but could be estimated at 0.10 and 0.07 for each of two locations. CONCLUSIONS: Light trap collections in combination with bed nets are not recommended as a reliable method to assess human biting rates on Bioko Island. Different statistical analyses methods give variable and inconsistent results. Substantial variation in collection methods prevents the determination of reliable and operationally feasible conversion factors for both indoor and outdoor data. Until improved mosquito collection methods are developed that can provide reliable and unbiased HBR estimates, HLCs should continue to serve as the reference method for HBR estimation
Increasing outdoor host-seeking in Anopheles gambiae over 6 years of vector control on Bioko Island.
BACKGROUND: Vector control through indoor residual spraying (IRS) has been employed on Bioko Island, Equatorial Guinea, under the Bioko Island Malaria Control Project (BIMCP) since 2004. This study analyses the change in mosquito abundance, species composition and outdoor host-seeking proportions from 2009 to 2014, after 11 years of vector control on Bioko Island. METHODS: All-night indoor and outdoor human landing catches were performed monthly in the Bioko Island villages of Mongola, Arena Blanca, Biabia and Balboa from 2009 to 2014. Collected mosquitoes were morphologically identified and a subset of Anopheles gambiae sensu lato (s.l.) were later identified molecularly to their sibling species. Mosquito collection rates, species composition and indoor/outdoor host-seeking sites were analysed using generalized linear mixed models to assess changes in mosquito abundance and behaviour. RESULTS: The overall mosquito collection rate declined in each of the four Bioko Island villages. Anopheles coluzzii and Anopheles melas comprised the An. gambiae s.l. mosquito vector population, with a range of species proportions across the four villages. The proportion of outdoor host-seeking An. gambiae s.l. mosquitoes increased significantly in all four villages with an average increase of 58.8 % [57.9, 59.64 %] in 2009 to 70.0 % [67.8, 72.0 %] in 2014. Outdoor host-seeking rates did not increase in the month after an IRS spray round compared to the month before, suggesting that insecticide repellency has little impact on host-seeking behaviour. CONCLUSION: While vector control on Bioko Island has succeeded in substantial reduction in overall vector biting rates, populations of An. coluzzii and An. melas persist. Host-seeking behaviour has changed in these An. gambiae s.l. populations, with a shift towards outdoor host-seeking. During this study period, the proportion of host-seeking An. gambiae s.l. caught outdoors observed on Bioko Island increased to high levels, exceeding 80 % in some locations. It is possible that there may be a genetic basis underlying this large shift in host-seeking behaviour, in which case outdoor feeding could pose a serious threat to current vector control programmes. Currently, the BIMCP is preparing for this potential challenge by testing source reduction as a complementary control effort that also targets outdoor transmission
Salvage surgery for local failures after stereotactic ablative radiotherapy for early stage non-small cell lung cancer
markdownabstract__Introduction:__ The literature on surgical salvage, i.e. lung resections in patients who develop a local recurrence following stereotactic ablative radiotherapy (SABR), is limited. We describe our experience with salvage surgery in nine patients who developed a local recurrence following SABR for early stage non-small cell lung cancer (NSCLC).
__Methods:__ Patients who underwent surgical salvage for a local recurrence following SABR for NSCLC were identified from two Dutch institutional databases. Complications were scored using the Dindo-Clavien-classification.
__Results:__ Nine patients who underwent surgery for a local recurrence were identified. Median time to local recurrence was 22 months. Recurrences were diagnosed with CT- and/or 18FDG-PET-imaging, with four patients also having a pre-surgical pathological diagnosis. Extensive adhesions were observed during two resections, requiring conversion from a thoracoscopic procedure to thoracotomy during one of these procedures. Three patients experienced complications post-surgery; grade 2 (N = 2) and grade 3a (N = 1), respectively. All resection specimens showed viable tumor cells. Median length of hospital stay was 8 days (range 5-15 days) and 30-day mortality was 0 %. Lymph node dissection revealed mediastinal metastases in 3 patients, all of whom received adjuvant therapy.
__Conclusions:__ Our experience with nine surgical procedures for local recurrences post-SABR revealed two grade IIIa complications, and a 30-day mortality of 0 %, suggesting that salvage surgery can be safely performed after SABR
Patterns of Selection in Anti-Malarial Immune Genes in Malaria Vectors: Evidence for Adaptive Evolution in LRIM1 in Anopheles arabiensis
Co-evolution between Plasmodium species and its vectors may result in adaptive changes in genes that are crucial components of the vector's defense against the pathogen. By analyzing which genes show evidence of positive selection in malaria vectors, but not in closely related non-vectors, we can identify genes that are crucial for the mosquito's resistance against Plasmodium.We investigated genetic variation of three anti-malarial genes; CEC1, GNBP-B1 and LRIM1, in both vector and non-vector species of the Anopheles gambiae complex. Whereas little protein differentiation was observed between species in CEC1 and GNBP-B1, McDonald-Kreitman and maximum likelihood tests of positive selection show that LRIM1 underwent adaptive evolution in a primary malaria vector; An. arabiensis. In particular, two adjacent codons show clear signs of adaptation by having accumulated three out of four replacement substitutions. Furthermore, our data indicate that this LRIM1 allele has introgressed from An. arabiensis into the other main malaria vector An. gambiae.Although no evidence exists to link the adaptation of LRIM1 to P. falciparum infection, an adaptive response of a known anti-malarial gene in a primary malaria vector is intriguing, and may suggest that this gene could play a role in Plasmodium resistance in An. arabiensis. If so, our data also predicts that LRIM1 alleles in An. gambiae vary in their level of resistance against P. falciparum
Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors
<p>Abstract</p> <p>Background</p> <p>Mosquitoes of the <it>Anopheles gambiae </it>species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect <it>Plasmodium </it>development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution.</p> <p>Methods</p> <p>Three serine protease inhibitors have previously been identified as candidate immune system genes mediating mosquito-Plasmodium interaction, and serine protease inhibitors have been identified as hot-spots of adaptive evolution in other taxa. Population-genetic tests for selection, including a recent multi-gene extension of the McDonald-Kreitman test, were applied to 16 serine protease inhibitors and 16 other genes sampled from the <it>An. gambiae </it>species complex in both East and West Africa.</p> <p>Results</p> <p>Serine protease inhibitors were found to show a marginally significant trend towards higher levels of amino acid diversity than other genes, and display extensive genetic structuring associated with the 2La chromosomal inversion. However, although serpins are candidate targets for strong parasite-mediated selection, no evidence was found for rapid adaptive evolution in these genes.</p> <p>Conclusion</p> <p>It is well known that phylogenetic and population history in the <it>An. gambiae </it>complex can present special problems for the application of standard population-genetic tests for selection, and this may explain the failure of this study to detect selection acting on serine protease inhibitors. The pitfalls of uncritically applying these tests in this species complex are highlighted, and the future prospects for detecting selection acting on the <it>An. gambiae </it>genome are discussed.</p
- …