8 research outputs found
3D structure of a Brucella melitensis porin: molecular modelling in lipid membranes
Brucella melitensis is a pathogenic bacterium responsible for brucellosis in mammals and humans. Its outer membrane proteins (Omp) control the diffusion of solutes through the membrane, and they consequently have a crucial role in the design of diagnostics and vaccines. Moreover, such proteins have recently revealed their potential for protein-based biomaterials. In the present contribution, the structure of the B. melitensis porin Omp2a is built using the RaptorX threading method. This is a 16-stranded Ăź-barrel with an a-helix on the third loop folding inside the barrel and forming the constriction zone of the channel, a typical feature of general porins such as PhoE and OmpF. The preferential diffusion of cations over anions experimentally observed in anterior studies is evidenced by the presence of distinct clusters of charges in the extracellular loops and in the inner pore. Docking studies support the previously reported hypothesis of Omp2a ability to aid maltotetraose diffusion. The monomer model is then assembled into a homotrimer, stabilized by the L2 loop involved in most of the interface interactions. The stability of the trimer is evaluated in three bilayers: pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and a mixture of 1:1 of POPC/POPE. All-atom molecular dynamics simulations demonstrate the Ăź-barrel-structural stability over time even though a breathing-like motion is observed. Compared to the pure bilayers, the POPC/POPE better preserves the integrity of the protein and its channel. Overall, this work demonstrates the relevancy of the Omp2a model and will help to design new therapeutic agents and bioinspired nanomaterialsPeer ReviewedPostprint (author's final draft
Structural and functional characterization of Solanum tuberosum VDAC36
As it forms water-filled channel in the mitochondria outer membrane and diffuses essential metabolites such as NADH and ATP, the voltage-dependent anion channel (VDAC) protein family plays a central role in all eukaryotic cells. In comparison with their mammalian homologues, little is known about the structural and functional properties of plant VDACs. In the present contribution, one of the two VDACs isoforms of Solanum tuberosum , stVDAC36, has been successfully overexpressed and refolded by an in-house method, as demonstrated by the information on its secondary and tertiary structure gathered from circular dichroism and intrinsic fluorescence. Cross-linking and molecular modeling studies have evidenced the presence of dimers and tetramers, and they suggest the formation of an intermolecular disulfide bond between two stVDAC36 monomers. The pore-forming activity was also assessed by liposome swelling assays, indicating a typical pore diameter between 2.0 and 2.7 nm. Finally, insights about the ATP binding inside the pore are given by docking studies and electrostatic calculations.Peer ReviewedPostprint (author's final draft
Properties of Omp2a-based supported lipid bilayers: comparison with polymeric bioinspired membranes
Omp2a ß-barrel outer membrane protein has been reconstituted into supported lipid bilayers (SLBs) to compare the nanomechanical properties (elastic modulus, adhesion forces, and deformation) and functionality of the resulting bioinspired system with those of Omp2a-based polymeric nanomembranes (NMs). Protein reconstitution into lipid bilayers has been performed using different strategies, the most successful one consisting of a detergent-mediated process into preformed liposomes. The elastic modulus obtained for the lipid bilayer and Omp2a are ~19 and 10.5 ± 1.7 MPa, respectively. Accordingly, the protein is softer than the lipid bilayer, whereas the latter exhibits less mechanical strength than polymeric NMs. Besides, the function of Omp2a in the SLB is similar to that observed for Omp2a-based polymeric NMs. Results open the door to hybrid bioinspired substrates based on the integration of Omp2a-proteoliposomes and nanoperforated polymeric freestanding NMs.Peer ReviewedPostprint (author's final draft
Self-standing, conducting and capacitive biomimetic hybrid nanomembranes for selective molecular ion separation
Hybrid free-standing biomimetic materials are developed by integrating the VDAC36 Ăź-barrel protein into robust and flexible three-layered polymer nanomembranes. The first and third layers are prepared by spin-coating a mixture of poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA). PVA nanofeatures are transformed into controlled nanoperforations by solvent-etching. The two nanoperforated PLA layers are separated by an electroactive layer, which is successfully electropolymerized by introducing a conducting sacrificial substrate under the first PLA nanosheet. Finally, the nanomaterial is consolidated by immobilizing the VDAC36 protein, active as an ion channel, into the nanoperforations of the upper layer. The integration of the protein causes a significant reduction of the material resistance, which decreases from 21.9 to 3.9 kO cm2. Electrochemical impedance spectroscopy studies using inorganic ions and molecular metabolites (i.e.L-lysine and ATP) not only reveal that the hybrid films behave as electrochemical supercapacitors but also indicate the most appropriate conditions to obtain selective responses against molecular ions as a function of their charge. The combination of polymers and proteins is promising for the development of new devices for engineering, biotechnological and biomedical applications.Hybrid free-standing biomimetic materials are developed by integrating the VDAC36 Ăź-barrel protein into robust and flexible three-layered polymer nanomembranes. The first and third layers are prepared by spin-coating a mixture of poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA). PVA nanofeatures are transformed into controlled nanoperforations by solvent-etching. The two nanoperforated PLA layers are separated by an electroactive layer, which is successfully electropolymerized by introducing a conducting sacrificial substrate under the first PLA nanosheet. Finally, the nanomaterial is consolidated by immobilizing the VDAC36 protein, active as an ion channel, into the nanoperforations of the upper layer. The integration of the protein causes a significant reduction of the material resistance, which decreases from 21.9 to 3.9 kO cm2. Electrochemical impedance spectroscopy studies using inorganic ions and molecular metabolites (i.e.L-lysine and ATP) not only reveal that the hybrid films behave as electrochemical supercapacitors but also indicate the most appropriate conditions to obtain selective responses against molecular ions as a function of their charge. The combination of polymers and proteins is promising for the development of new devices for engineering, biotechnological and biomedical applications.Peer ReviewedPostprint (author's final draft
Influence of the surrounding environment in re-naturalized Ăź-barrel membrane proteins
© 2017 Elsevier B.V. Outer-membrane porins are currently being used to prepare bioinspired nanomembranes for selective ion transport by immobilizing them into polymeric matrices. However, the fabrication of these protein-integrated devices has been found to be strongly influenced by the instability of the ß-barrel porin structure, which depends on surrounding environment. In this work, molecular dynamics simulations have been used to investigate the structural stability of a representative porin, OmpF, in three different environments: (i) aqueous solution at pH = 7; (ii) a solution of neutral detergent in a concentration similar to the critical micelle concentration; and (iii) the protein embedded into a neutral detergent bilayer. The results indicate that the surrounding environment not only alters the stability of the ß-barrel but affects the internal loop responsible of the ions transport, as well as the tendency of the porin proteins to aggregate into trimers. The detergent bilayer preserves the structure of OmpF protein as is found bacteria membranes, while pure aqueous solution induces a strong destabilization of the protein. An intermediate situation occurs for detergent solution. Our results have been rationalized in terms of protein ¿ water and protein ¿ detergent interactions, which makes them extremely useful for the future design of new generation of bioinspired protein-integrated devices.Peer ReviewedPostprint (author's final draft
3D structure of a Brucella melitensis porin: molecular modelling in lipid membranes
Brucella melitensis is a pathogenic bacterium responsible for brucellosis in mammals and humans. Its outer membrane proteins (Omp) control the diffusion of solutes through the membrane, and they consequently have a crucial role in the design of diagnostics and vaccines. Moreover, such proteins have recently revealed their potential for protein-based biomaterials. In the present contribution, the structure of the B. melitensis porin Omp2a is built using the RaptorX threading method. This is a 16-stranded Ăź-barrel with an a-helix on the third loop folding inside the barrel and forming the constriction zone of the channel, a typical feature of general porins such as PhoE and OmpF. The preferential diffusion of cations over anions experimentally observed in anterior studies is evidenced by the presence of distinct clusters of charges in the extracellular loops and in the inner pore. Docking studies support the previously reported hypothesis of Omp2a ability to aid maltotetraose diffusion. The monomer model is then assembled into a homotrimer, stabilized by the L2 loop involved in most of the interface interactions. The stability of the trimer is evaluated in three bilayers: pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and a mixture of 1:1 of POPC/POPE. All-atom molecular dynamics simulations demonstrate the Ăź-barrel-structural stability over time even though a breathing-like motion is observed. Compared to the pure bilayers, the POPC/POPE better preserves the integrity of the protein and its channel. Overall, this work demonstrates the relevancy of the Omp2a model and will help to design new therapeutic agents and bioinspired nanomaterialsPeer Reviewe
Influence of the surrounding environment in re-naturalized Ăź-barrel membrane proteins
© 2017 Elsevier B.V. Outer-membrane porins are currently being used to prepare bioinspired nanomembranes for selective ion transport by immobilizing them into polymeric matrices. However, the fabrication of these protein-integrated devices has been found to be strongly influenced by the instability of the ß-barrel porin structure, which depends on surrounding environment. In this work, molecular dynamics simulations have been used to investigate the structural stability of a representative porin, OmpF, in three different environments: (i) aqueous solution at pH = 7; (ii) a solution of neutral detergent in a concentration similar to the critical micelle concentration; and (iii) the protein embedded into a neutral detergent bilayer. The results indicate that the surrounding environment not only alters the stability of the ß-barrel but affects the internal loop responsible of the ions transport, as well as the tendency of the porin proteins to aggregate into trimers. The detergent bilayer preserves the structure of OmpF protein as is found bacteria membranes, while pure aqueous solution induces a strong destabilization of the protein. An intermediate situation occurs for detergent solution. Our results have been rationalized in terms of protein ¿ water and protein ¿ detergent interactions, which makes them extremely useful for the future design of new generation of bioinspired protein-integrated devices.Peer Reviewe
Thermomechanical response of a representative porin for biomimetics
The thermomechanical response of Omp2a, a representative porin used for the fabrication of smart biomimetic nanomembranes, has been characterized using microcantilever technology and compared with standard proteins. For this purpose, thermally induced transitions involving the conversion of stable trimers to bigger aggregates, local reorganizations based on the strengthening or weakening of intermolecular interactions, and protein denaturation have been detected by the microcantilever resonance frequency and deflection as a function of the temperature. Measurements have been carried out on arrays of 8-microcantilevers functionalized with proteins (Omp2a, lysozyme and bovine serum albumin). To interpret the measured nanofeatures, the response of proteins to temperature has been also examined using other characterization techniques, including real time wide angle X-ray diffraction. Results not only demonstrate the complex behavior of porins, which exhibit multiple local thermal transitions before undergoing denaturation at temperatures higher than 105 °C, but also suggest a posttreatment to control the orientation of immobilized Omp2a molecules in functionalized biomimetic nanomembranes and, thus, increase their efficacy in ion transport.Peer Reviewe