518 research outputs found

    ODAS: Open embeddeD Audition System

    Full text link
    Artificial audition aims at providing hearing capabilities to machines, computers and robots. Existing frameworks in robot audition offer interesting sound source localization, tracking and separation performance, but involve a significant amount of computations that limit their use on robots with embedded computing capabilities. This paper presents ODAS, the Open embeddeD Audition System framework, which includes strategies to reduce the computational load and perform robot audition tasks on low-cost embedded computing systems. It presents key features of ODAS, along with cases illustrating its uses in different robots and artificial audition applications

    Optimisation des interféromÚtres fibrés pour la stabilisation d'oscillateurs laser

    Get PDF
    La grande cohĂ©rence temporelle du signal Ă©mis par un oscillateur laser, en comparaison aux autres sources lumineuses, constitue une des propriĂ©tĂ©s les plus remarquables du laser. Aujourd'hui, un grand nombre d'applications allant de la spectroscopie Ă  la tĂ©lĂ©dĂ©tection reposent sur un laser stabilisĂ©, c'est-Ă -dire d'un laser mono frĂ©quence dont la cohĂ©rence temporelle est amĂ©liorĂ©e par asservissement Ă  une rĂ©fĂ©rence externe. Le dĂ©veloppement des horloges atomiques optiques et des dĂ©tecteurs d'ondes gravitationnelles, deux efforts de recherche de portĂ©e mondiale qui repoussent continuellement les limites technologiques, est par ailleurs Ă©troitement liĂ© aux progrĂšs dans le domaine de la stabilisation laser. À ce jour, les signaux laser les plus cohĂ©rents ont Ă©tĂ© produits par asservissement Ă  des cavitĂ©s en espace libre de type Fabry-Perot hautement dĂ©couplĂ©es d'un environnement de laboratoire contrĂŽlĂ©. Dans les cinquante derniĂšres annĂ©es, ces cavitĂ©s ont Ă©tĂ© le sujet d'un intense effort de recherche par les principaux laboratoires de mĂ©trologie nationaux ; leur performance est prĂ©sentement limitĂ©e par des fluctuations thermodynamiques de la taille des miroirs dĂ©limitant la cavitĂ©, une limite qui semble pour l'instant difficile Ă  surmonter. Il y a un intĂ©rĂȘt Ă  Ă©tudier d'autres types de rĂ©fĂ©rences externes, non seulement pour Ă©tablir s'il est possible de vaincre la limite de stabilitĂ© actuelle en poussant le progrĂšs dans une direction alternative, mais aussi parce que la complexitĂ© des meilleures cavitĂ©s en espace libre les rend peu attrayantes dans toutes les applications pour lesquelles une stabilitĂ© laser record n'est pas requise. Les travaux de recherche prĂ©sentĂ©s dans cette thĂšse sont unis sous le thĂšme de l'optimisation des interfĂ©romĂštres Ă  fibre optique. Ces interfĂ©romĂštres, tout comme les cavitĂ©s Fabry-Perot qui ont fait l'objet d'une recherche beaucoup plus poussĂ©e, peuvent agir Ă  titre de rĂ©fĂ©rence externe pour la stabilisation laser ; ils affichent une performance typiquement dĂ©terminĂ©e soit par le bruit de photodĂ©tection, soit par les fluctuations de longueur et d'indice de la fibre constituant le bras de dĂ©lai dans une configuration Michelson ou Mach-Zehnder. Fondamentalement, la stabilitĂ© ultime d'un laser verrouillĂ© Ă  un tel interfĂ©romĂštre est limitĂ©e par les fluctuations d'origine thermodynamique du parcours optique dans la fibre, une limite qui est plus Ă©levĂ©e que la limite analogue dans une cavitĂ© en espace libre dans la mesure oĂč une fibre de silice conventionnelle est considĂ©rĂ©e. En comparaison, ces interfĂ©romĂštres fibrĂ©s sont toutefois plus simples Ă  construire et Ă  opĂ©rer. Les trois premiers articles prĂ©sentĂ©s dans cette thĂšse s'intĂ©ressent au cas d'un interfĂ©romĂštre fibrĂ© limitĂ© par le bruit de photodĂ©tection. Cette condition est normalement atteinte lorsqu'une relativement courte fibre optique est utilisĂ©e. On y montre qu'une limite de stabilitĂ© fondamentale associĂ©e au bruit de grenaille peut ĂȘtre calculĂ©e. Surtout, on Ă©tablit pour la premiĂšre fois que cette limite peut ĂȘtre asymptotiquement atteinte peu importe la mĂ©thode de dĂ©tection et le point d'opĂ©ration utilisĂ©s, pour autant que deux conditions soient respectĂ©es : que tous les signaux interfĂ©romĂ©triques disponibles soient indĂ©pendamment enregistrĂ©s et combinĂ©s de façon optimale et que le caractĂšre cyclostationnaire du bruit de grenaille soit soigneusement considĂ©rĂ© pour la construction de la forme d'onde de dĂ©modulation (si le signal laser est modulĂ©). On prĂ©sente aussi une nouvelle mĂ©thode, similaire Ă  la dĂ©tection auto-hĂ©tĂ©rodyne, permettant de minimiser l'impact des bruits de photodĂ©tection d'origine technique et faciliter l'opĂ©ration Ă  la limite du bruit de grenaille. Les deux derniers articles de cette thĂšse s'intĂ©ressent plutĂŽt au cas d'un interfĂ©romĂštre dont la performance est limitĂ©e par le bruit de longueur optique fondamental de la fibre, ce qui est pertinent pour une fibre de longueur intermĂ©diaire. On y montre que des fibres Ă  coeur creux rĂ©cemment dĂ©veloppĂ©es, les fibres antirĂ©sonantes, exhibent des propriĂ©tĂ©s les rendant utilisables aux fins de la stabilisation laser et potentiellement compĂ©titives vis-Ă -vis des fibres conventionnelles et peut-ĂȘtre mĂȘme des cavitĂ©s en espace libre. En particulier, on dĂ©montre que ces fibres Ă  coeur creux, lorsque Ă©vacuĂ©es, affichent un coefficient de rĂ©trodiffusion Rayleigh qui est de quatre ordres de grandeur infĂ©rieur Ă  celui d'une fibre conventionnelle ; leur bruit thermoconductif est aussi plus faible par 5 dB Ă  20 kHz et peut vraisemblablement ĂȘtre diminuĂ© davantage. De futurs travaux pourront confirmer si le bruit fondamental de ces fibres est aussi faible qu'envisagĂ© pour les basses frĂ©quences, ce qui permettrait de considĂ©rer leur utilisation pour faire vĂ©ritable compĂ©tition aux cavitĂ©s ultra-stables.The great temporal coherence of the signal emitted by a laser oscillator, compared to other light sources, constitutes one of the most remarkable properties of the laser. Today, a large number of applications ranging from spectroscopy to remote sensing rely on a stabilized laser, that is, a single-frequency laser whose temporal coherence is improved by locking it to an external reference. The development of optical atomic clocks and gravitational wave detectors, two world-class research efforts that are constantly pushing technological boundaries, is also closely related to advances in laser stabilization. To this day, the most coherent laser signals have been produced by locking lasers to free-space Fabry-Perot cavities highly decoupled from a controlled laboratory environment. In the last fifty years, such cavities have been the subject of an intense research effort by the main national metrology laboratories; their performance is currently limited by thermodynamic fluctuations in the dimensions of the mirrors delimiting the cavity, a limit which currently appears difficult to overcome. There is an interest in studying other types of external references, not only to establish whether it is possible to beat the current stability limit by pushing progress in an alternative direction, but also because the complexity of the best free-space cavities makes them unattractive in all applications for which record stability is not required. The research work presented in this thesis is united under the theme of the optimization of fiber interferometers. Such interferometers, just like the Fabry-Perot cavities which have been the subject of much more extensive research, can act as an external reference for laser stabilization; they display a performance typically determined either by the photodetection noise or by the length and index fluctuations of the optical fiber constituting the delay arm in a Michelson or Mach-Zehnder configuration. Fundamentally, the ultimate stability of a laser locked to such an interferometer is limited by thermodynamic fluctuations of the optical path through the fiber, a limit which is higher than the analogous limit in a free-space cavity when a conventional silica fiber is considered. In comparison, however, these fiber interferometers are simpler to build and operate. The three first articles presented in this thesis focus on the case of a fiber interferometer limited by photodetection noise. This condition is normally reached when a relatively short optical fiber is used. It is shown that a fundamental stability limit associated with shot noise can be calculated. Most importantly, it is established for the first time that this limit can be asymptotically attained regardless of the detection method and the operating point that are used, provided that two conditions are met: that all available interferometric signals are independently recorded and combined in a optimal manner and that the cyclostationary nature of shot noise is carefully considered when constructing the demodulation waveform (if the laser signal is modulated). We also introduce a new method, similar to self-heterodyne detection, which allows the minimization of technical photodetection noise and facilitates shot-noise-limited operation. The last two articles of this thesis rather concern the case of an interferometer whose performance is limited by the fiber's fundamental optical path noise, which is relevant when the delay fiber is of intermediate length. It is shown that recently developed antiresonant hollow-core fibers exhibit properties that make them suitable for the purposes of laser stabilization and potentially competitive with conventional silica fibers and perhaps even free-space cavities. In particular, it is demonstrated that these hollow-core fibers, when evacuated, display a Rayleigh backscattering coefficient which is four orders of magnitude lower than that of a conventional fiber; their thermoconductive noise is also lower by 5 dB at 20 kHz and can likely be reduced further. Future work will confirm whether the fundamental noise of these fibers at low frequencies is as low as currently anticipated, which would allow their consideration to truly compete with ultra-stable free-space cavities

    Sediment reworking by marine benthic species from the Gullmar Fjord (Western Sweden): Importance of faunal biovolume

    Get PDF
    In order to compare and quantify sediment reworking activities by different species/functional groups of macrofauna, a laboratory experiment was carried out with species from the Gullmarsfjord (Western Sweden). Monospecific communities of Amphiura filiformis, Echinocardium cordatum, Scalibregma inflatum and Abra nitida were introduced in experimental mesocosms, with identical densities (795 ind. m−2), for 10 days. Sediment reworking was studied by quantifying downward and upward movements of fluorescent inert tracers (luminophores). Luminophores with different colour were initially deposited both at the sediment surface and within the sediments. Population biomass and biovolume were also determined. Surface tracers reworking coefficients ranged from 0.6 to 2.2 cm2 y−1 and 0.9 to 4.1 y−1, respectively for the biodiffusive-like and non-local transports. Calculated biodiffusive-like coefficient was between 1.0 and 2.3 cm2 y−1 for the deep tracers. For both tracers, the E. cordatum population presented the highest reworking coefficients. Among the morphological and/or ethological parameters that could determine overall patterns of reworking and differences between species, results have shown a direct relationship between the apparent biodiffusive mixing and the biovolume of the individuals (Db=0.35 ⁎ Biovolume). This suggests that the biovolume of macrofauna may allow a rough estimate of the biodiffusive-like reworking intensity of particles deposited on the sediment surface

    Dual-comb spectroscopy with a phase-modulated probe comb for sub-MHz spectral sampling

    Get PDF
    We present a straightforward and efficient method to reduce the mode spacing of a frequency comb based on binary pseudo-random phase modulation of its pulse train. As a proof of concept, we use such a densified comb to perform dual-comb spectroscopy of a long-delay Mach–Zehnder interferometer and a high-quality-factor microresonator with sub-MHz spectral sampling. Since this approach is based on binary phase modulation, it combines all the advantages of other densification techniques: simplicity, single-step implementation, and conservation of the initial comb’s power
    • 

    corecore