17 research outputs found

    Decreased mTOR signaling pathway in human idiopathic autism and in rats exposed to valproic acid

    Get PDF
    BackgroundThe molecular mechanisms underlying autistic behaviors remain to be elucidated. Mutations in genes linked to autism adversely affect molecules regulating dendritic spine formation, function and plasticity, and some increase the mammalian target of rapamycin, mTOR, a regulator of protein synthesis at spines. Here, we investigated whether the Akt/mTOR pathway is disrupted in idiopathic autism and in rats exposed to valproic acid, an animal model exhibiting autistic-like behavior.MethodsComponents of the mTOR pathway were assayed by Western blotting in postmortem fusiform gyrus samples from 11 subjects with idiopathic autism and 13 controls and in valproic acid versus saline-exposed rat neocortex. Additionally, protein levels of brain-derived neurotrophic factor receptor (TrkB) isoforms and the postsynaptic organizing molecule PSD-95 were measured in autistic versus control subjects.ResultsFull-length TrkB, PI3K, Akt, phosphorylated and total mTOR, p70S6 kinase, eIF4B and PSD-95 were reduced in autistic versus control fusiform gyrus. Similarly, phosphorylated and total Akt, mTOR and 4E-BP1 and phosphorylated S6 protein were decreased in valproic acid- versus saline-exposed rats. However, no changes in 4E-BP1 or eIF4E were found in autistic brains.ConclusionsIn contrast to some monogenic disorders with high rates of autism, our data demonstrate down-regulation of the Akt/mTOR pathway, specifically via p70S6K/eIF4B, in idiopathic autism. These findings suggest that disruption of this pathway in either direction is widespread in autism and can have adverse consequences for synaptic function. The use of valproic acid, a histone deacetylase inhibitor, in rats successfully modeled these changes, implicating an epigenetic mechanism in these pathway disruptions

    Brain-derived neurotrophic factor and TrkB expression in the "oldest-old," the 90+ Study: correlation with cognitive status and levels of soluble amyloid-beta.

    No full text
    Factors associated with maintaining good cognition into old age are unclear. Decreased brain-derived neurotrophic factor (BDNF) contributes to memory loss in Alzheimer's disease (AD), and soluble assemblies of amyloid-beta (Aβ) and tau contribute to neurodegeneration. However, it is unknown whether AD-type neuropathology, soluble Aβ and tau, or levels of BDNF and its receptor tropomyosin-related kinase B (TrkB) correlate with dementia in the oldest-old. We examined these targets in postmortem Brodmann's areas 7 and 9 (BA7 and BA9) in 4 groups of subjects >90 years old: (1) no dementia/no AD pathology, (2) no dementia/AD pathology, (3) dementia/no AD pathology, (4) dementia/AD pathology. In BA7, BDNF messenger RNA correlated with Mini-Mental State Examination scores and was decreased in demented versus nondemented subjects, regardless of pathology. Soluble Aβ42 was increased in both groups with AD pathology, demented or not, compared to no dementia/no AD pathology subjects. Groups did not differ in TrkB isoform levels or in levels of total soluble tau, individual tau isoforms, threonine-181 tau phosphorylation, or ratio of phosphorylated 3R-4R isoforms. In BA9, soluble Aβ42 correlated with Mini-Mental State Examination scores and with BDNF messenger RNA expression. Thus, soluble Aβ42 and BDNF, but not TrkB or soluble tau, correlate with dementia in the oldest-old

    Cerebrospinal Fluid Prongf: A Putative Biomarker For Early Alzheimer’S Disease

    No full text
    The discovery of biomarkers for the onset of Alzheimer’s disease (AD) is essential for disease modification strategies. To date, AD biomarker studies have focused on brain imaging and cerebrospinal fluid (CSF) changes in amyloid- β (Aβ) peptide and tau proteins. While reliable to an extent, this panel could be improved by the inclusion of novel biomarkers that optimize sensitivity and specificity. In this study, we determined whether CSF levels of the nerve growth factor (NGF) precursor protein, proNGF, increased during the progression of AD, mirroring its up regulation in postmortem brain samples of people who died with a clinical diagnosis of mild cognitive impairment (MCI) or AD. Immunoblot analysis was performed on ventricular CSF harvested from participants in the Rush Religious Orders Study with an antemortem clinical diagnosis of no cognitive impairment (NCI), amnestic MCI (aMCI, a putative prodromal AD stage), or mild/moderate AD. ProNGF levels were increased 55% in aMCI and 70% in AD compared to NCI. Increasing CSF proNGF levels correlated with impairment on cognitive test scores. In a complementary study, we found that proNGF was significantly increased by 30% in lumbar CSF samples derived from patients with a clinical dementia rating (CDR) of 0.5 or 1 compared to those with a CDR = 0. Notably, proNGF/Aβ1-42 levels were 50% higher in CDR 0.5 and CDR 1 compared to CDR 0 controls. By contrast, ELISA measurements of CSF brain-derived neurotrophic factor (BDNF) did not distinguish aMCI from NCI. Taken together, these results suggest that proNGF protein levels may augment the diagnostic accuracy of currently used CSF biomarker panels

    Differential deregulation of NGF and BDNF neurotrophins in a transgenic rat model of Alzheimer's disease

    Get PDF
    Evidence from human neuropathological studies indicates that the levels of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are compromised in Alzheimer's disease. However, the causes and temporal (pathology-dependent) evolution of these alterations are not completely understood. To elucidate these issues, we investigated the McGill-R-Thy1-APP transgenic rat, which exhibits progressive intracellular and extracellular amyloid-beta (Aβ) pathology and ensuing cognitive deficits. Neurochemical analyses revealed a differential dysregulation of NGF and BDNF transcripts and protein expression. While BDNF mRNA levels were significantly reduced at very early stages of amyloid pathology, before plaques appeared, there were no changes in NGF mRNA expression even at advanced stages. Paradoxically, the protein levels of the NGF precursor were increased. These changes in neurotrophin expression are identical to those seen during the progression of Alzheimer's disease. At advanced pathological stages, deficits in the protease cascade controlling the maturation and degradation of NGF were evident in McGill transgenic rats, in line with the paradoxical upregulation of proNGF, as seen in Alzheimer's disease, in the absence of changes in NGF mRNA. The compromise in NGF metabolism and BDNF levels was accompanied by downregulation of cortical cholinergic synapses; strengthening the evidence that neurotrophin dysregulation affects cholinergic synapses and synaptic plasticity. Our findings suggest a differential temporal deregulation of NGF and BDNF neurotrophins, whereby deficits in BDNF mRNA appear at early stages of intraneuronal Aβ pathology, before alterations in NGF metabolism and cholinergic synapse loss manifest.Fil: Iulita, M. Florencia. McGill University; CanadáFil: Bistue Millon, Maria Beatriz. Universidad Católica de Cuyo - Sede San Juan. Facultad de Ciencias Médicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pentz, Rowan. Universidad Católica de Cuyo - Sede San Juan. Facultad de Ciencias Médicas; ArgentinaFil: Aguilar, Lisi Flores. McGill University; CanadáFil: Do Carmo, Sonia. McGill University; CanadáFil: Allard, Simon. McGill University; CanadáFil: Michalski, Bernadeta. Mc Master University; CanadáFil: Wilson, Edward N.. McGill University; CanadáFil: Ducatenzeiler, Adriana. Universidad Católica de Cuyo - Sede San Juan. Facultad de Ciencias Médicas; ArgentinaFil: Bruno, Martin. Universidad Católica de Cuyo - Sede San Juan. Facultad de Ciencias Médicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fahnestock, Margaret. Mc Master University; CanadáFil: Cuello, A. Claudio. McGill University; Canad

    Differential effects of chronic immunosuppression on behavioral, epigenetic, and Alzheimer’s disease-associated markers in 3xTg-AD mice

    No full text
    Abstract Background Circulating autoantibodies and sex-dependent discrepancy in prevalence are unexplained phenomena of Alzheimer’s disease (AD). Using the 3xTg-AD mouse model, we reported that adult males show early manifestations of systemic autoimmunity, increased emotional reactivity, enhanced expression of the histone variant macroH2A1 in the cerebral cortex, and loss of plaque/tangle pathology. Conversely, adult females display less severe autoimmunity and retain their AD-like phenotype. This study examines the link between immunity and other traits of the current 3xTg-AD model. Methods Young 3xTg-AD and wild-type mice drank a sucrose-laced 0.4 mg/ml solution of the immunosuppressant cyclophosphamide on weekends for 5 months. After behavioral phenotyping at 2 and 6 months of age, we assessed organ mass, serologic markers of autoimmunity, molecular markers of early AD pathology, and expression of genes associated with neurodegeneration. Results Chronic immunosuppression prevented hematocrit drop and reduced soluble Aβ in 3xTg-AD males while normalizing the expression of histone variant macroH2A1 in 3xTg-AD females. This treatment also reduced hepatosplenomegaly, lowered autoantibody levels, and increased the effector T cell population while decreasing the proportion of regulatory T cells in both sexes. Exposure to cyclophosphamide, however, neither prevented reduced brain mass and BDNF expression nor normalized increased tau and anxiety-related behaviors. Conclusion The results suggest that systemic autoimmunity increases soluble Aβ production and affects transcriptional regulation of macroH2A1 in a sex-related manner. Despite the complexity of multisystem interactions, 3xTg-AD mice can be a useful in vivo model for exploring the regulatory role of autoimmunity in the etiology of AD-like neurodegenerative disorders

    The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity

    Full text link
    The triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial innate immune receptor associated with a lethal form of early, progressive dementia, Nasu-Hakola disease, and with an increased risk of Alzheimer's disease. Microglial defects in phagocytosis of toxic aggregates or apoptotic membranes were proposed to be at the origin of the pathological processes in the presence of Trem2 inactivating mutations. Here, we show that TREM2 is essential for microglia-mediated synaptic refinement during the early stages of brain development. The absence of Trem2 resulted in impaired synapse elimination, accompanied by enhanced excitatory neurotransmission and reduced long-range functional connectivity. Trem2 mice displayed repetitive behavior and altered sociability. TREM2 protein levels were also negatively correlated with the severity of symptoms in humans affected by autism. These data unveil the role of TREM2 in neuronal circuit sculpting and provide the evidence for the receptor's involvement in neurodevelopmental diseases
    corecore