45 research outputs found

    Phenylketonuria

    Get PDF
    Genome research is emerging as a new and important tool in biology used to obtain information on gene sequences, genomic interaction, and how genes work in concert to produce the final syndrome or phenotype. Defect in phenylalanine hydroxylase (PAH) gene result in Phenylketonuria (PKU). Molecular studies using the brain of the mouse model for PKU (PAHenu2) showed altered expression of several genes including upregulation of orexin A and a low activity of branched chain aminotransferase. These studies suggest that a single gene (PAH) defect is associated with altered expression, transcription and translation of other genes. It is the combination of the primary gene defect, the altered expression of other genes, and the new metabolic environment that is created, which lead to the phenotype

    Resolution of the clinical features of tyrosinemia following orthotopic liver transplantation for hepatoma

    Get PDF
    The clinical history before transplantation and subsequent clinical and biochemical course of 3 children and one adult with hereditary tyrosinemia treated by orthotopic hepatic transplantation is described. All four patients are now free of their previous dietary restrictions and appear to be cured of both their metabolic disease and their hepatic neoplasm. © 1986 Elsevier Science Publishers B.V. All rights reserved

    Frequency of 12 mutations in 114 children with phenylketonuria in the Midwest region of the USA

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42497/1/10545_2004_Article_BF00711829.pd

    Carcinogenic Effects in a Phenylketonuria Mouse Model

    Get PDF
    Phenylketonuria (PKU) is a metabolic disorder caused by impaired phenylalanine hydroxylase (PAH). This condition results in hyperphenylalaninemia and elevated levels of abnormal phenylalanine metabolites, among which is phenylacetic acid/phenylacetate (PA). In recent years, PA and its analogs were found to have anticancer activity against a variety of malignancies suggesting the possibility that PKU may offer protection against cancer through chronically elevated levels of PA. We tested this hypothesis in a genetic mouse model of PKU (PAHenu2) which has a biochemical profile that closely resembles that of human PKU. Plasma levels of phenylalanine in homozygous (HMZ) PAHenu2 mice were >12-fold those of heterozygous (HTZ) littermates while tyrosine levels were reduced. Phenylketones, including PA, were also markedly elevated to the range seen in the human disease. Mice were subjected to 7,12 dimethylbenz[a]anthracene (DMBA) carcinogenesis, a model which is sensitive to the anticancer effects of the PA derivative 4-chlorophenylacetate (4-CPA). Tumor induction by DMBA was not significantly different between the HTZ and HMZ mice, either in total tumor development or in the type of cancers that arose. HMZ mice were then treated with 4-CPA as positive controls for the anticancer effects of PA and to evaluate its possible effects on phenylalanine metabolism in PKU mice. 4-CPA had no effect on the plasma concentrations of phenylalanine, phenylketones, or tyrosine. Surprisingly, the HMZ mice treated with 4-CPA developed an unexplained neuromuscular syndrome which precluded its use in these animals as an anticancer agent. Together, these studies support the use of PAHenu2 mice as a model for studying human PKU. Chronically elevated levels of PA in the PAHenu2 mice were not protective against cancer

    Phenylketonuria in Portugal: Genotype-Phenotype Correlations Using Molecular, Biochemical, and Haplotypic Analyses

    Get PDF
    The impairment of the hepatic enzyme phenylalanine hydroxylase (PAH) causes elevation of phenylalanine levels in blood and other body fluids resulting in the most common inborn error of amino acid metabolism (phenylketonuria). Persistently high levels of phenylalanine lead to irreversible damage to the nervous system. Therefore, early diagnosis of the affected individuals is important, as it can prevent clinical manifestations of the disease.info:eu-repo/semantics/publishedVersio

    A LC-MS metabolomics approach to investigate the effect of raw apple intake in the rat plasma metabolome

    Get PDF
    Fruit and vegetable consumption has been associated with several health benefits; however the mechanisms are largely unknown at the biochemical level. Our research aims to investigate whether plasma metabolome profiling can reflect biological effects after feeding rats with raw apple by using an untargeted UPLC-ESI-TOF-MS based metabolomics approach in both positive and negative mode. Eighty young male rats were randomised into groups receiving daily 0, 5 or 10 g fresh apple slices, respectively, for 13 weeks. During weeks 3-6 some of the animals were receiving 4 mg/ml 1,2-dimethylhydrazine dihydrochloride (DMH) once a week. Plasma samples were taken at the end of the intervention and among all groups, about half the animals were 12 h fasted. An initial ANOVA-simultaneous component analysis with a three-factor or two-factor design was employed in order to isolate potential metabolic variations related to the consumption of fresh apples. Partial least squares-discriminant analysis was then applied in order to select discriminative features between plasma metabolites in control versus apple fed rats and partial least squares modelling to reveal possible dose response. The findings indicate that in laboratory rats apple feeding may alter the microbial amino acid fermentation, lowering toxic metabolites from amino acids metabolism and increasing metabolism into more protective products. It may also delay lipid and amino acid catabolism, gluconeogenesis, affect other features of the transition from the postprandial to the fasting state and affect steroid metabolism by suppressing the plasma level of stress corticosteroids, certain mineralocorticoids and oxidised bile acid metabolites. Several new hypotheses regarding the cause of health effects from apple intake can be generated from this study for further testing in humans. © 2013 Springer Science+Business Media New York

    Sapropterin Dihydrochloride Tablets

    No full text
    corecore