15 research outputs found

    pygwb: Python-based library for gravitational-wave background searches

    Full text link
    The collection of gravitational waves (GWs) that are either too weak or too numerous to be individually resolved is commonly referred to as the gravitational-wave background (GWB). A confident detection and model-driven characterization of such a signal will provide invaluable information about the evolution of the Universe and the population of GW sources within it. We present a new, user-friendly Python--based package for gravitational-wave data analysis to search for an isotropic GWB in ground--based interferometer data. We employ cross-correlation spectra of GW detector pairs to construct an optimal estimator of the Gaussian and isotropic GWB, and Bayesian parameter estimation to constrain GWB models. The modularity and clarity of the code allow for both a shallow learning curve and flexibility in adjusting the analysis to one's own needs. We describe the individual modules which make up {\tt pygwb}, following the traditional steps of stochastic analyses carried out within the LIGO, Virgo, and KAGRA Collaboration. We then describe the built-in pipeline which combines the different modules and validate it with both mock data and real GW data from the O3 Advanced LIGO and Virgo observing run. We successfully recover all mock data injections and reproduce published results.Comment: 32 pages, 14 figure

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Gravitational-Wave Geodesy: Defining False Alarm Probabilities with Respect to Correlated Noise

    Full text link
    Future searches for a gravitational-wave background using Earth-based gravitational-wave detectors might be impacted by correlated noise sources. A well known example are the Schumann resonances, which are extensively studied in the context of searches for a gravitational-wave background. Earlier work has shown that a technique termed "gravitational-wave geodesy" can be used to generically differentiate observations of a gravitational-wave background from signals due to correlated terrestrial effects, requiring true observations to be consistent with the known geometry of our detector network. The key result of this test is a Bayes factor between the hypotheses that a candidate signal is astrophysical or terrestrial in origin. Here, we further formalize the geodesy test, mapping distributions of false-alarm and false-acceptance probabilities to quantify the degree with which a given Bayes factor will boost or diminish our confidence in an apparent detection of the gravitational-wave background. To define the false alarm probability of a given Bayes factor, we must have knowledge of our null hypothesis: the space of all possible correlated terrestrial signals. Since we do not have this knowledge we instead construct a generic space of smooth functions in the frequency domain using Gaussian processes, which we tailor to be conservative. This enables us to use draws from our Gaussian processes as a proxy for all possible non-astrophysical signals. As a demonstration, we apply the tool to the SNR = 1.25 excess observed for a 2/3-power law by the LIGO and Virgo collaborations during their second observing run

    Measurement of the Cross-Correlation Angular Power Spectrum Between the Stochastic Gravitational Wave Background and Galaxy Over-Density

    No full text
    International audienceWe study the cross-correlation between the stochastic gravitational-wave background (SGWB) generated by binary black hole (BBH) mergers across the universe and the distribution of galaxies across the sky. We use the anisotropic SGWB measurement obtained using data from the third observing run (O3) of Advanced LIGO detectors and galaxy over-density obtained from the Sloan Digital Sky Survey (SDSS) spectroscopic catalog. We compute, for the first time, the angular power spectrum of their cross-correlation. Instead of integrating the SGWB across frequencies, we analyze the cross-correlation in 10 Hz wide SGWB frequency bands to study the frequency dependence of the cross-correlation angular power spectrum. Finally, we compare the observed cross-correlation to the spectra predicted by astrophysical models. We apply a Bayesian formalism to explore the parameter space of the theoretical models, and we set constraints on a set of (effective) astrophysical parameters describing the galactic process of gravitational wave (GW) emission. Parameterizing with a Gaussian function the astrophysical kernel describing the local process of GW emission at galactic scales, we find the 95% upper limit on kernel amplitude to be 2.7×10322.7 \times 10^{-32} erg cm3^{-3}s1/3^{-1/3} when ignoring the shot noise in the GW emission process, and 2.16×10322.16 \times 10^{-32} erg cm3^{-3}s1/3^{-1/3} when the shot noise is included in the analysis. As the sensitivity of the LIGO-Virgo-KAGRA network improves, we expect to be able to set more stringent bounds on this kernel function and constrain its parameters

    2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS) : The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC)

    No full text
    Guidelines summarize and evaluate available evidence with the aim of assisting health professionals in proposing the best management strategies for an individual patient with a given condition. Guidelines and their recommendations should facilitate decision making of health professionals in their daily practice. However, the final decisions concerning an individual patient must be made by the responsible health professional(s) in consultation with the patient and caregiver as appropriate
    corecore