9 research outputs found

    COMET deliverable (D-No. 1.5). COMET project final report: advancement in science, integration and sustainability of European radioecology

    Get PDF
    The EC FP7 COMET (Coordination and iMplementation of a pan-European instrument for radioecology) was funded to strengthen the pan-European research initiative on the impact of radiation on man and the environment by facilitating the integration of radioecology research and development

    Measurement of radioactivity in building materials – Problems encountered caused by possible disequilibrium in natural decay series

    No full text
    The determination of the activity concentration of naturally occurring radionuclides in construction materials is based on the principles of gamma-spectrometry. Gamma spectrometry is a comparative method and therefore includes many parameters that are specific to the test sample and measurement circumstances. Consequently, several of the testing conditions must be verified prior to testing and/or require correction to obtain accurate results. Besides problems encountered during the measurement, the interpretation of the results and calculation of the activity indices, needed for material classification, may lead to significant mistakes. Current regulation in the European Union requires to calculate an activity concentration index (index I) using the activity concentration of 226Ra, 232Th and 40K. Not all of these radionuclides are directly measurable by gamma spectrometry and, to determine the index, additional assumptions have to be made about secular equilibrium in uranium and thorium decay series. These assumptions are often not valid in case of NORM (Naturally Occurring Radioactive Materials) where long term lack of secular equilibrium in the uranium and/or thorium decay series is often observed. As a consequence, this may result in an underestimation or overestimation of the index. The article discusses specific disequilibrium situations in building materials. Sources for potential inaccurate determinations and misinterpretation are identified and practical mitigation options are proposed.The authors would like to acknowledge the contribution of the COST Action TU1301 (www.norm4building.org) as a platform for discussion.natural radioactivity; gamma spectrometry; NORM; index formul

    Tools for harmonized data collection at exposure situations with naturally occurring radioactive materials (NORM)

    Get PDF
    Naturally occurring radioactive materials (NORM) contribute to the dose arising from radiation exposure for workers, public and non-human biota in different working and environmental conditions. Within the EURATOM Horizon 2020 RadoNorm project, work is ongoing to identify NORM exposure situations and scenarios in European countries and to collect qualitative and quantitative data of relevance for radiation protection. The data obtained will contribute to improved understanding of the extent of activities involving NORM, radionuclide behaviours and the associated radiation exposure, and will provide an insight into related scientific, practical and regulatory challenges.The development of a tiered methodology for identification of NORM exposure situations and complementary tools to support uniform data collection were the first activities in the mentioned project NORM work. While NORM identification methodology is given in Michalik et al., 2023, in this paper, the main details of tools for NORM data collection are presented and they are made publicly available.The tools are a series of NORM registers in Microsoft Excel form, that have been comprehensively designed to help (a) identify the main NORM issues of radiation protection concern at given exposure situations, (b) gain an overview of materials involved (i.e., raw materials, products, by-products, residues, effluents), c) collect qualitative and quantitative data on NORM, and (d) characterise multiple hazards exposure scenarios and make further steps towards development of an integrated risk and exposure dose assessment for workers, public and non-human biota.Furthermore, the NORM registers ensure standardised and unified characterisation of NORM situations in a manner that supports and complements the effective management and regulatory control of NORM processes, products and wastes, and related exposures to natural radiation worldwide

    A methodology for the systematic identification of naturally occurring radioactive materials (NORM)

    No full text
    Naturally occurring radioactive materials (NORM) are present worldwide and under certain circumstances (e.g., human activities) may give radiation exposure to workers, local public or occasional visitors and non-human biota (NHB) of the surrounding ecosystems. This may occur during planned or existing exposure situations which, under current radiation protection standards, require identification, management, and regulatory control as for other practices associated with man-made radionuclides that may result in the exposure of people and NHB. However, knowledge gaps exist with respect to the extent of global and European NORM exposure situations and their exposure scenario characteristics, including information on the presence of other physical hazards, such as chemical and biological ones. One of the main reasons for this is the wide variety of industries, practices and situations that may utilise NORM. Additionally, the lack of a comprehensive methodology for identification of NORM exposure situations and the absence of tools to support a systematic characterisation and data collection at identified sites may also lead to a gap in knowledge. Within the EURATOM Horizon 2020 RadoNorm project, a methodology for systematic NORM exposure identification has been developed. The methodology, containing consecutive tiers, comprehensively covers situations where NORM may occur (i.e., minerals and raw materials deposits, industrial activities, industrial products and residues and their applications, waste, legacies), and thus, allows detailed investigation and complete identification of situations where NORM may present a radiation protection concern in a country. Details of the tiered methodology, with practical examples on harmonised data collection using a variety of existing sources of information to establish NORM inventories, are presented in this paper. This methodology is flexible and thus applicable to a diversity of situations. It is intended to be used to make NORM inventory starting from the scratch, however it can be used also to systematise and complete existing data.publishe
    corecore