3,491 research outputs found

    The 'Non-Cumulation' Clause: Policyholders Cannot Have Their Cake and Eat it Too

    Get PDF
    This is the published version

    FLOWERING LOCUS C -dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways

    Get PDF
    Background The circadian system drives pervasive biological rhythms in plants. Circadian clocks integrate endogenous timing information with environmental signals, in order to match rhythmic outputs to the local day/night cycle. Multiple signaling pathways affect the circadian system, in ways that are likely to be adaptively significant. Our previous studies of natural genetic variation in Arabidopsis thaliana accessions implicated FLOWERING LOCUS C (FLC) as a circadian-clock regulator. The MADS-box transcription factor FLC is best known as a regulator of flowering time. Its activity is regulated by many regulatory genes in the "autonomous" and vernalization-dependent flowering pathways. We tested whether these same pathways affect the circadian system. Results Genes in the autonomous flowering pathway, including FLC, were found to regulate circadian period in Arabidopsis. The mechanisms involved are similar, but not identical, to the control of flowering time. By mutant analyses, we demonstrate a graded effect of FLC expression upon circadian period. Related MADS-box genes had less effect on clock function. We also reveal an unexpected vernalization-dependent alteration of periodicity. Conclusion This study has aided in the understanding of FLC's role in the clock, as it reveals that the network affecting circadian timing is partially overlapping with the floral-regulatory network. We also show a link between vernalization and circadian period. This finding may be of ecological relevance for developmental programing in other plant species

    Do we understand the incompressibility of neutron-rich matter?

    Full text link
    The ``breathing mode'' of neutron-rich nuclei is our window into the incompressibility of neutron-rich matter. After much confusion on the interpretation of the experimental data, consistency was finally reached between different models that predicted both the distribution of isoscalar monopole strength in finite nuclei and the compression modulus of infinite matter. However, a very recent experiment on the Tin isotopes at the Research Center for Nuclear Physics(RCNP) in Japan has again muddled the waters. Self-consistent models that were successful in reproducing the energy of the giant monopole resonance (GMR) in nuclei with various nucleon asymmetries (such as 90Zr, 144Sm, and 208Pb) overestimate the GMR energies in the Tin isotopes. As important, the discrepancy between theory and experiment appears to grow with neutron excess. This is particularly problematic as models artificially tuned to reproduce the rapid softening of the GMR in the Tin isotopes become inconsistent with the behavior of dilute neutron matter. Thus, we regard the question of ``why is Tin so soft?'' as an important open problem in nuclear structure.Comment: 12 pages, 3 figures, and 1 table. Submitted to the "Focus issue on Open Problems in Nuclear Structure", Journal of Physics

    Pleiotropy of FRIGIDA enhances the potential for multivariate adaptation.

    Get PDF
    An evolutionary response to selection requires genetic variation; however, even if it exists, then the genetic details of the variation can constrain adaptation. In the simplest case, unlinked loci and uncorrelated phenotypes respond directly to multivariate selection and permit unrestricted paths to adaptive peaks. By contrast, 'antagonistic' pleiotropic loci may constrain adaptation by affecting variation of many traits and limiting the direction of trait correlations to vectors that are not favoured by selection. However, certain pleiotropic configurations may improve the conditions for adaptive evolution. Here, we present evidence that the Arabidopsis thaliana gene FRI (FRIGIDA) exhibits 'adaptive' pleiotropy, producing trait correlations along an axis that results in two adaptive strategies. Derived, low expression FRI alleles confer a 'drought escape' strategy owing to fast growth, low water use efficiency and early flowering. By contrast, a dehydration avoidance strategy is conferred by the ancestral phenotype of late flowering, slow growth and efficient water use during photosynthesis. The dehydration avoidant phenotype was recovered when genotypes with null FRI alleles were transformed with functional alleles. Our findings indicate that the well-documented effects of FRI on phenology result from differences in physiology, not only a simple developmental switch

    Thrombosis And Hemostasis Centers Pilot Sites Registry: Thrombophilia Screening In Children

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106147/1/jth03026.pd
    corecore