4 research outputs found

    Inner Retinal Layer Changes Reflect Changes in Ambulation Score in Patients with Primary Progressive Multiple Sclerosis

    Get PDF
    The establishment of surrogate markers to detect disability progression in persons with multiple sclerosis (PwMS) is important to improve monitoring of clinical deterioration. Optical coherence tomography (OCT) could be such a tool. However, sufficient longitudinal data of retinal neuroaxonal degeneration as a marker of disease progression exist only for PwMS with a relapsing–remitting course (RRMS) so far. In contrast, longitudinal data of retinal layers in patients with primary-progressive MS (PPMS) are inconsistent, and the association of OCT parameters with ambulatory performance in PwMS has rarely been investigated. We aimed to investigate the relative annual rates of change in retinal layers in PwMS (RRMS and PPMS) compared with healthy controls (HC) using OCT and to evaluate their association with ambulatoryfunctionalscore (AS) worsening in PPMS. A retrospective analysis of a longitudinal OCT dataset of the retinal layers of PwMS and HC from two MS centers in Germany was performed. Walking ability was measured over a standardized distance of 500 m, and changes during the observation period were categorized using the AS and the expanded disability status scale (EDSS). 61 HC with 121 eyes and 119 PwMS (PPMS: 57 patients with 108 eyes; RRMS: 62 patients with 114 eyes) were included. The median follow-up time for PwMS was 3 years. The relative annual change of pRNFL (peripapillary retinal nerve fiber layer) and INL (inner nuclear layer) was significantly different in PwMS compared with HC. RRMS and PPMS subgroups did not differ in the annual atrophy rates. In patients with PPMS, worsening of the AS was significantly associated with increased thinning of the TMV (total macular volume), GCIP (ganglion cell and inner plexiform layer), and ONPL (outer nuclear and outer plexiform layer) (all p-value r > 0.30). For every −0.1% decrease in the TMV, GCIP, and ONPL, the risk of a deterioration in the AS increased by 31% (hazard ratio (HR): 1.309), 11% (HR: 1.112), and 16% (HR: 1.161), respectively. In addition, worsening EDSS in PPMS was significantly associated with the relative annual atrophy rates of pRNFL, TMV, and GCIP (all p-value < 0.05). Disability progression in PPMS can be measured using OCT, and increasing annual atrophy rates of the inner retinal layers are associated with worsening ambulation. OCT is a robust and side-effect-free imaging tool, making it suitable for routine monitoring of PwMS

    Multivariate Meta-Analysis of Brain-Mass Correlations in Eutherian Mammals

    Get PDF
    The general assumption that brain size differences are an adequate proxy for subtler differences in brain organization turned neurobiologists toward the question why some groups of mammals such as primates, elephants, and whales have such remarkably large brains. In this meta-analysis, an extensive sample of eutherian mammals (115 species distributed in 14 orders) provided data about several different biological traits and measures of brain size such as absolute brain mass (AB), relative brain mass (RB; quotient from AB and body mass), and encephalization quotient (EQ). These data were analyzed by established multivariate statistics without taking specific phylogenetic information into account. Species with high AB tend to (1) feed on protein-rich nutrition, (2) have a long lifespan, (3) delayed sexual maturity, and (4) long and rare pregnancies with small litter sizes. Animals with high RB usually have (1) a short life span, (2) reach sexual maturity early, and (3) have short and frequent gestations. Moreover, males of species with high RB also have few potential sexual partners. In contrast, animals with high EQs have (1) a high number of potential sexual partners, (2) delayed sexual maturity, and (3) rare gestations with small litter sizes. Based on these correlations, we conclude that Eutheria with either high AB or high EQ occupy positions at the top of the network of food chains (high trophic levels). Eutheria of low trophic levels can develop a high RB only if they have small body masses
    corecore