168 research outputs found

    Extracting the intrinsic switching field distribution in perpendicular media: a comparative analysis

    Full text link
    We introduce a new method based on the first-order-reversal-curve (FORC) diagram to extract the intrinsic (microscopic) switching-field distribution (SFD) of perpendicular recording media (PRM). To demonstrate the viability of the method, we micromagnetically simulated FORCs for PRM with known SFD and compare the extracted SFD with the SFD obtained by means of two different methods that are based on recoil loops, too, which however rely on mean-field approximations and assumptions on the shape of the SFD. The FORC method turns out to be the most accurate algorithm over a broad range of dipolar interaction strengths, where the other methods overestimate the width of the SFD.Comment: 3 pages with 2 figures, 3 supplemental figures; submitted to J. Appl. Phys. (MMM Annual Conference Proceedings

    Biophysics of magnetic orientation: strengthening the interface between theory and experimental design

    Get PDF
    The first demonstrations of magnetic effects on the behaviour of migratory birds and homing pigeons in laboratory and field experiments, respectively, provided evidence for the longstanding hypothesis that animals such as birds that migrate and home over long distances would benefit from possession of a magnetic sense. Subsequent identification of at least two plausible biophysical mechanisms for magnetoreception in animals, one based on biogenic magnetite and another on radical-pair biochemical reactions, led to major efforts over recent decades to test predictions of the two models, as well as efforts to understand the ultrastructure and function of the possible magnetoreceptor cells. Unfortunately, progress in understanding the magnetic sense has been challenged by: (i) the availability of a relatively small number of techniques for analysing behavioural responses to magnetic fields by animals; (ii) difficulty in achieving reproducible results using the techniques; and (iii) difficulty in development and implementation of new techniques that might bring greater experimental power. As a consequence, laboratory and field techniques used to study the magnetic sense today remain substantially unchanged, despite the huge developments in technology and instrumentation since the techniques were developed in the 1950s. New methods developed for behavioural study of the magnetic sense over the last 30 years include the use of laboratory conditioning techniques and tracking devices based on transmission of radio signals to and from satellites. Here we consider methodological developments in the study of the magnetic sense and present suggestions for increasing the reproducibility and ease of interpretation of experimental studies. We recommend that future experiments invest more effort in automating control of experiments and data capture, control of stimulation and full blinding of experiments in the rare cases where automation is impossible. We also propose new experiments to confirm whether or not animals can detect magnetic fields using the radical-pair effect together with an alternate hypothesis that may explain the dependence on light of responses by animals to magnetic field stimuli

    Avian magnetic compass can be tuned to anomalously low magnetic intensities

    Get PDF
    The avian magnetic compass works in a fairly narrow functional windowaround the intensity of the local geomagnetic field, but adjusts tointensities outside this range when birds experience these newintensities for a certain time. In the past, the geomagnetic field hasoften been much weaker than at present. To find out whether birds canobtain directional information from a weak magnetic field, we studiedspontaneous orientation preferences of migratory robins in a 4 mu Tfield (i.e. a field of less than 10 per cent of the local intensity of47 mu T). Birds can adjust to this low intensity: they turned out to bedisoriented under 4 mu T after a pre-exposure time of 8 h to 4 mu T, butwere able to orient in this field after a total exposure time of 17 h.This demonstrates a considerable plasticity of the avian magneticcompass. Orientation in the 4 mu T field was not affected by localanaesthesia of the upper beak, but was disrupted by a radiofrequencymagnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pairmechanism still provides the directional information in the low magneticfield. This is in agreement with the idea that the avian magneticcompass may have developed already in the Mesozoic in the commonancestor of modern birds

    Quantitative Decoding of Interactions in Tunable Nanomagnet Arrays Using First Order Reversal Curves

    Get PDF
    To develop a full understanding of interactions in nanomagnet arrays is a persistent challenge, critically impacting their technological acceptance. This paper reports the experimental, numerical and analytical investigation of interactions in arrays of Co nanoellipses using the first-order reversal curve (FORC) technique. A mean-field analysis has revealed the physical mechanisms giving rise to all of the observed features: a shift of the non-interacting FORC-ridge at the low-Hc_c end off the local coercivity Hc_c axis; a stretch of the FORC-ridge at the high-Hc_c end without shifting it off the Hc_c axis; and a formation of a tilted edge connected to the ridge at the low-Hc_c end. Changing from flat to Gaussian coercivity distribution produces a negative feature, bends the ridge, and broadens the edge. Finally, nearest neighbor interactions segment the FORC-ridge. These results demonstrate that the FORC approach provides a comprehensive framework to qualitatively and quantitatively decode interactions in nanomagnet arrays.Comment: 19 pages, 4 figures. 9 page supplemental material including 3 figure

    Sub-Micrometer-Scale Mapping of Magnetite Crystals and Sulfur Globules in Magnetotactic Bacteria Using Confocal Raman Micro-Spectrometry

    Get PDF
    The ferrimagnetic mineral magnetite Fe3O4 is biomineralized by magnetotactic microorganisms and a diverse range of animals. Here we demonstrate that confocal Raman microscopy can be used to visualize chains of magnetite crystals in magnetotactic bacteria, even though magnetite is a poor Raman scatterer and in bacteria occurs in typical grain sizes of only 35-120 nm, well below the diffraction-limited optical resolution. When using long integration times together with low laser power (<0.25 mW) to prevent laser induced damage of magnetite, we can identify and map magnetite by its characteristic Raman spectrum (303, 535, 665 cm(-1)) against a large autofluorescence background in our natural magnetotactic bacteria samples. While greigite (cubic Fe3S4; Raman lines of 253 and 351 cm(-1)) is often found in the Deltaproteobacteria class, it is not present in our samples. In intracellular sulfur globules of Candidatus Magnetobacterium bavaricum (Nitrospirae), we identified the sole presence of cyclo-octasulfur (S-8: 151, 219, 467 cm(-1)), using green (532 nm), red (638 nm) and near-infrared excitation (785 nm). The Raman-spectra of phosphorous-rich intracellular accumulations point to orthophosphate in magnetic vibrios and to polyphosphate in magnetic cocci. Under green excitation, the cell envelopes are dominated by the resonant Raman lines of the heme cofactor of the b or c-type cytochrome, which can be used as a strong marker for label-free live-cell imaging of bacterial cytoplasmic membranes, as well as an indicator for the redox state

    MRI Segmentation of Cervical Muscle Volumes in Survived Strangulation: Is There an Association between Side Differences in Muscle Volume and the Handedness of the Perpetrator? A Retrospective Study

    Full text link
    We evaluate the potential value of magnetic resonance imaging (MRI) in the examination of survivors of manual strangulation. Our hypothesis was that trauma-induced edema of the cervical muscles might lead to a side difference in the muscle volumes, associated with the handedness of the perpetrator. In 50 individuals who survived strangulation, we performed MRI-based segmentation of the cervical muscle volumes. As a control group, the neck MRIs of 10 clinical patients without prior trauma were used. The ratio of the right to left muscle volume was calculated for each muscle group of the control and strangulation groups. Cutoff values for the assumed physiological muscle volume ratios between the right and left sides were identified from our control group. There was no significant difference among the individuals in the pathological muscle volume ratio between right-handed versus both-handed strangulation for the sternocleidomastoid, pretracheal, anterior deep, or trapezoid muscle groups. Only the posterior deep muscle group showed a statistically significant difference in the pathological muscle volume ratio for both-handed strangulations (p = 0.011). Measurement of side differences in cervical muscle volume does not allow for a conclusion concerning the probable handedness of the perpetrator

    Postmortem pulmonary CT in hypothermia

    Get PDF
    Fatal hypothermia has been associated with pulmonary edema. With postmortem full body computed tomography scanning (PMCT), the lungs can also be examined for CT attenuation. In fatal hypothermia cases low CT attenuation appeared to prevail in the lungs. We compared 14 cases of fatal hypothermia with an age-sex matched control group. Additionally, 4 cases of carbon monoxide (CO) poisoning were examined. Furthermore, 10 test cases were examined to test predictability based on PMCT. Two readers measured CT attenuation on four different axial slices across the lungs (blinded to case group and other reader's results). Hypothermia was associated with statistically significantly lower lung PMCT attenuation and lower lung weights than controls, and there was a dose-effect relationship at an environmental temperature cutoff of 2°C. CO poisoning yielded low pulmonary attenuation but higher lung weights. General model based prediction yielded a 94% probability for fatal hypothermia deaths and a 21% probability for non-hypothermia deaths in the test group. Increased breathing rate is known to accompany both CO poisoning and hypothermia, so this could partly explain the low PMCT lung attenuation due to an oxygen dissociation curve left shift. A more marked distension in fatal hypothermia, compared to CO poisoning, indicates that further, possibly different mechanisms, are involved in these cases. Increased dead space and increased stiffness to deflation (but not inflation) appear to be effects of inhaling cold air (but not CO) that may explain the difference in low PMCT attenuation seen in hypothermia cases

    Diminished growth and vitality in juvenile Hydractinia echinata under anticipated future temperature and variable nutrient conditions

    Get PDF
    In a warming climate, rising seawater temperatures and declining primary and secondary production will drastically affect growth and fitness of marine invertebrates in the northern Atlantic Ocean. To study the ecological performance of juvenile hydroids Hydractinia echinata we exposed them to current and predicted water temperatures which reflect the conditions in the inter- and subtidal in combination with changing food availability (high and low) in laboratory experiments. Here we show, that the interplay between temperature stress and diminished nutrition affected growth and vitality of juvenile hydroids more than either factor alone, while high food availability mitigated their stress responses. Our numerical growth model indicated that the growth of juvenile hydroids at temperatures beyond their optimum is a saturation function of energy availability. We demonstrated that the combined effects of environmental stressors should be taken into consideration when evaluating consequences of climate change. Interactive effects of ocean warming, decreasing resource availability and increasing organismal energy demand may have major impacts on biodiversity and ecosystem function
    corecore