153 research outputs found
Severe wildfire exposes remnant peat carbon stocks to increased post-fire drying
Abstract The potential of high severity wildfires to increase global terrestrial carbon emissions and exacerbate future climatic warming is of international concern. Nowhere is this more prevalent than within high latitude regions where peatlands have, over millennia, accumulated legacy carbon stocks comparable to all human CO2 emissions since the beginning of the industrial revolution. Drying increases rates of peat decomposition and associated atmospheric and aquatic carbon emissions. The degree to which severe wildfires enhance drying under future climates and induce instability in peatland ecological communities and carbon stocks is unknown. Here we show that high burn severities increased post-fire evapotranspiration by 410% within a feather moss peatland by burning through the protective capping layer that restricts evaporative drying in response to low severity burns. High burn severities projected under future climates will therefore leave peatlands that dominate dry sub-humid regions across the boreal, on the edge of their climatic envelopes, more vulnerable to intense post-fire drying, inducing high rates of carbon loss to the atmosphere that amplify the direct combustion emissions
Low Energy Nuclear Reaction Aircraft- 2013 ARMD Seedling Fund Phase I Project
This report serves as the final written documentation for the Aeronautic Research Mission Directorate (ARMD) Seedling Fund's Low Energy Nuclear Reaction (LENR) Aircraft Phase I project. The findings presented include propulsion system concepts, synergistic missions, and aircraft concepts. LENR is a form of nuclear energy that potentially has over 4,000 times the energy density of chemical energy sources. It is not expected to have any harmful emissions or radiation which makes it extremely appealing. There is a lot of interest in LENR, but there are no proven theories. This report does not explore the feasibility of LENR. Instead, it assumes that a working system is available. A design space exploration shows that LENR can enable long range and high speed missions. Six propulsion concepts, six missions, and four aircraft concepts are presented. This report also includes discussion of several issues and concerns that were uncovered during the study and potential research areas to infuse LENR aircraft into NASA's aeronautics research
Hubble Space Telescope Imaging of Lyman Alpha Emission at z=4.4
We present the highest redshift detections of resolved Lyman alpha emission,
using Hubble Space Telescope/ACS F658N narrowband-imaging data taken in
parallel with the Wide Field Camera 3 Early Release Science program in the
GOODS CDF-S. We detect Lyman alpha emission from three spectroscopically
confirmed z = 4.4 Lyman alpha emitting galaxies (LAEs), more than doubling the
sample of LAEs with resolved Lyman alpha emission. Comparing the light
distribution between the rest-frame ultraviolet continuum and narrowband
images, we investigate the escape of Lyman alpha photons at high redshift.
While our data do not support a positional offset between the Lyman alpha and
rest-frame ultraviolet (UV) continuum emission, the half-light radii in two out
of the three galaxies are significantly larger in Lyman alpha than in the
rest-frame UV continuum. This result is confirmed when comparing object sizes
in a stack of all objects in both bands. Additionally, the narrowband flux
detected with HST is significantly less than observed in similar filters from
the ground. These results together imply that the Lyman alpha emission is not
strictly confined to its indigenous star-forming regions. Rather, the Lyman
alpha emission is more extended, with the missing HST flux likely existing in a
diffuse outer halo. This suggests that the radiative transfer of Lyman alpha
photons in high-redshift LAEs is complicated, with the interstellar-medium
geometry and/or outflows playing a significant role in galaxies at these
redshifts.Comment: Submitted to the Astrophysical Journal. 11 pages, 10 figure
- …