2,632 research outputs found

    ROLE OF FLUID ON THE CONTACT DEFORMATION RESPONSE OF BIOLOGICAL TISSUE

    Get PDF
    This paper will focus on the role of fluids on the indentation deformation response of tooth and eye tissues. All natural biological materials contain fluid and function in a fluidic environment, which plays a critical role in responding to loading events as well as tissue nutrition. The location of this fluid varies and is considered as both bound and mobile with much of it located in cell compartments that are also able to respond directly to loading. The extent of the fluid content varies from less than 10 % in the case of the highly mineralised enamel to more than 80 % in the case of soft eye tissues. The role of the fluid and its response during loading is also complicated by the hierarchical structure of biological tissues, be they mineralised or not. The mechanisms by which the presence of fluid in these materials influences the mechanical response is still poorly understood and has not been systematically investigated. The present paper presents data generated over many years on both the above biological tissues and attempts to present indications as to the mechanism(s) by which the presence of fluid contributes to the deformation. The situation associated with contact loading with the presence of mobile fluid in the tissues results in a more complex situation than the classic elastic-plastic contact situation, but the latter still forms the basis for much of the analysis of instrumented indentation force-displacement load-unloading curves using various shapes of indenters, especially for mineralised structures. In the case of soft tissues the absence of agreed protocols for interpretation of force-displacement-time responses is restricting clinical/biological applications

    Giant pop-ins and amorphization in germanium during indentation

    Get PDF
    Sudden excursions of unusually large magnitude (>1 μm), “giant pop-ins,” have been observed in the force-displacement curve for high load indentation of crystalline germanium(Ge). A range of techniques including Raman microspectroscopy, focused ion-beam cross sectioning, and transmission electron microscopy, are applied to study this phenomenon. Amorphous material is observed in residual indents following the giant pop-in. The giant pop-in is shown to be a material removal event, triggered by the development of shallow lateral cracks adjacent to the indent. Enhanced depth recovery, or “elbowing,” observed in the force-displacement curve following the giant pop-in is explained in terms of a compliant response of plates of material around the indent detached by lateral cracking. The possible causes of amorphization are discussed, and the implications in light of earlier indentation studies of Ge are considered

    Paramedic management of back pain : a scoping review

    Get PDF
    Background: Research examining paramedic care of back pain is limited. Objective: To describe ambulance service use and usual paramedic care for back pain, the effectiveness and safety of paramedic care of back pain, and the characteristics of people with back pain who seek care from paramedics. Methods: We included published peer-reviewed studies of people with back pain who received any type of paramedic care on-scene and/or during transport to hospital. We searched MEDLINE, EMBASE, CINAHL, Web of Science and SciELO from inception to July 2022. Two authors independently screened and selected the studies, performed data extraction, and assessed the methodological quality using the PEDro, AMSTAR 2 and Hawker tools. This review followed the JBI methodological guidance for scoping reviews and PRISMA extension for scoping reviews. Results: From 1987 articles we included 26 articles (25 unique studies) consisting of 22 observational studies, three randomised controlled trials and one review. Back pain is frequently in the top 3 reasons for calls to an ambulance service with more than two thirds of cases receiving ambulance dispatch. It takes ~ 8 min from time of call to an ambulance being dispatched and 16% of calls for back pain receive transport to hospital. Pharmacological management of back pain includes benzodiazepines, NSAIDs, opioids, nitrous oxide, and paracetamol. Non-pharmacological care is poorly reported and includes referral to alternate health service, counselling and behavioural interventions and self-care advice. Only three trials have evaluated effectiveness of paramedic treatments (TENS, active warming, and administration of opioids) and no studies provided safety or costing data. Conclusion: Paramedics are frequently responding to people with back pain. Use of pain medicines is common but varies according to the type of back pain and setting, while non-pharmacological care is poorly reported. There is a lack of research evaluating the effectiveness and safety of paramedic care for back pain

    An agonistic anti-CD137 antibody disrupts lymphoid follicle structure and T-cell-dependent antibody responses

    Get PDF
    CD137 is a costimulatory receptor expressed on natural killer cells, T cells, and subsets of dendritic cells. An agonistic monoclonal antibody (mAb) against CD137 has been used to reduce tumor burden or reverse autoimmunity in animal models and clinical trials. Here, we show that mice treated with an agonistic anti-CD137 mAb have reduced numbers of germinal center (GC) B cells and follicular dendritic cells (FDCs) in lymphoid tissues, which impair antibody responses to multiple T-cell-dependent antigens, including infectious virus, viral proteins, and conjugated haptens. These effects are not due to enhanced apoptosis or impaired proliferation of B cells but instead correlate with changes in lymphoid follicle structure and GC B cell dispersal and are mediated by CD137 signaling in CD

    An agonistic anti-CD137 antibody disrupts lymphoid follicle structure and T-cell-dependent antibody responses

    Get PDF
    CD137 is a costimulatory receptor expressed on natural killer cells, T cells, and subsets of dendritic cells. An agonistic monoclonal antibody (mAb) against CD137 has been used to reduce tumor burden or reverse autoimmunity in animal models and clinical trials. Here, we show that mice treated with an agonistic anti-CD137 mAb have reduced numbers of germinal center (GC) B cells and follicular dendritic cells (FDCs) in lymphoid tissues, which impair antibody responses to multiple T-cell-dependent antigens, including infectious virus, viral proteins, and conjugated haptens. These effects are not due to enhanced apoptosis or impaired proliferation of B cells but instead correlate with changes in lymphoid follicle structure and GC B cell dispersal and are mediated by CD137 signaling in CD

    Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment

    Get PDF
    The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on chambers design features and will discuss the performance of the upgraded detector

    Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC

    Get PDF
    Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised
    • …
    corecore