30 research outputs found

    Two-photon Lithography for 3D Magnetic Nanostructure Fabrication

    Get PDF
    Ferromagnetic materials have been utilised as recording media within data storage devices for many decades. Confinement of the material to a two dimensional plane is a significant bottleneck in achieving ultra-high recording densities and this has led to the proposition of three dimensional (3D) racetrack memories that utilise domain wall propagation along nanowires. However, the fabrication of 3D magnetic nanostructures of complex geometry is highly challenging and not easily achievable with standard lithography techniques. Here, by using a combination of two-photon lithography and electrochemical deposition, we show a new approach to construct 3D magnetic nanostructures of complex geometry. The magnetic properties are found to be intimately related to the 3D geometry of the structure and magnetic imaging experiments provide evidence of domain wall pinning at a 3D nanostructured junction

    From micro to macroevolution: drivers of shape variation in an island radiation of Podarcis lizards

    Get PDF
    Phenotypictraits have been shown to evolve in response to variation in the environment. However, the evolutionary processes underlying the emergence of phenotypic diversity can typically only be understood at the population level. Consequently, how subtle phenotypic differences at the intraspecific level can give rise to larger-scale changes in performance and ecology remains poorly understood. We here tested for the covariation between ecology, bite force, jaw muscle architecture, and the three-dimensional shape of the cranium and mandible in 16 insular populations of the lizards Podarcis melisellensis and P. sicula. We then compared the patterns observed at the among-population level with those observed at the interspecific level. We found that three-dimensional head shape as well as jaw musculature evolve similarly under similar ecological circumstances. Depending on the type of food consumed or on the level of sexual competition, different muscle groups were more developed and appeared to underlie changes in cranium and mandible shape. Our findings show that the local selective regimes are primary drivers of phenotypic variation resulting in predictable patterns of form and function. Moreover, intraspecific patterns of variation were generally consistent with those at the interspecific level, suggesting that microevolutionary variation may translate into macroevolutionary patterns of ecomorphological diversity

    Linking micro and macroevolution of head shape in an island radiation

    No full text
    Phenotypic traits have been shown to evolve in response to variation in the environment. However, the evolutionary processes underlying the emergence of phenotypic diversity can typically only be understood at the population level. Consequently, how subtle phenotypic differences at the intraspecific level can give rise to larger-scale changes in performance and ecology remains poorly understood. We here tested for the covariation between ecology, bite force, jaw muscle architecture, and the three-dimensional shape of the cranium and mandible in 16 insular populations of the lizards Podarcis melisellensis and P. sicula. We then compared the patterns observed at the among-population level with those observed at the interspecific level. We found that three-dimensional head shape as well as jaw musculature evolve similarly under similar ecological circumstances. Depending on the type of food consumed or on the level of sexual competition, different muscle groups were more developed and appeared to underlie changes in cranium and mandible shape. Our findings show that the local selective regimes are primary drivers of phenotypic variation resulting in predictable patterns of form and function. Moreover, intraspecific patterns of variation were generally consistent with those at the interspecific level, suggesting that microevolutionary variation may translate into macroevolutionary patterns of ecomorphological diversity.,In-vivo bite force, diet and intrapopulation competition levels were investigated throughout 16 insular and mainland populations of Podarcis lizards. Data was acquired on the field and animals released, although 5 females and 5 males of each population were sacrificed, fixed in formalin and CT scanned. Their jaw musculature was then dissected to quantify variation in muscle architecture. The scans were used to reconstruct cranial and mandible 3D surface which were subsequently analysed with geometric morphometrics approach.
    corecore