494 research outputs found

    Properties of the non-Gaussian fixed point in 4D compact U(1) lattice gauge theory

    Get PDF
    We examine selected properties of the gauge-ball spectrum and fermionic variables in the vicinity of the recently discussed non-Gaussian fixed point of 4D compact U(1) lattice gauge theory within the quenched approximation. Approaching the critical point from within the confinement phase, our data support scaling of T1+−T1^{+-} gauge-ball states in units of the string tension square root. The analysis of the chiral condensate within the framework of a scaling form for the equation of state suggests non mean-field values for the magnetic exponents δ\delta and βexp\beta_{exp}.Comment: 73K postscript fil

    Universality of the gauge-ball spectrum of the four-dimensional pure U(1) gauge theory

    Get PDF
    We continue numerical studies of the spectrum of the pure U(1) lattice gauge theory in the confinement phase, initiated in our previous work. Using the extended Wilson action S=−∑P[βcos⁡(ΘP)+γcos⁡(2ΘP)] S = -\sum_P [\beta \cos(\Theta_P) + \gamma \cos(2\Theta_P)] we address the question of universality of the phase transition line in the (β,γ\beta,\gamma) plane between the confinement and the Coulomb phases. Our present results at γ=−0.5\gamma= -0.5 for the gauge-ball spectrum are fully consistent with the previous results obtained at γ=−0.2\gamma= -0.2. Again, two different correlation length exponents, νng=0.35(3)\nu_{ng} = 0.35(3) and νg=0.49(7)\nu_{g} = 0.49(7), are obtained in different channels. We also confirm the stability of the values of these exponents with respect to the variation of the distance from the critical point at which they are determined. These results further demonstrate universal critical behaviour of the model at least up to correlation lengths of 4 lattice spacings when the phase transition is approached in some interval at γ≤−0.2\gamma\leq -0.2.Comment: 16 page

    The confining string and its breaking in QCD

    Get PDF
    We point out that the world sheet swept by the confining string in presence of dynamical quarks can belong to two different phases, depending on the number of charge species and the quark masses. When it lies in the normal phase (as opposed to the tearing one) the string breaking is invisible in the Wilson loop, while is manifest in operators composed of disjoint sources, as observed in many numerical experiments. We work out an explicit formula for the correlator of Polyakov loops at finite temperature, which is then compared with recent lattice data, both in the quenched case and in presence of dynamical quarks. The analysis in the quenched case shows that the free bosonic string model describes accurately the data for distances larger than ~ 0.75 fm. In the unquenched case we derive predictions on the dependence of the static potential on the temperature which are compatible with the lattice data.Comment: 15 pages, LaTeX with 4 eps figures (included

    Investigating Yang-Mills theory and Confinement as a function of the spatial volume

    Get PDF
    We study the volume dependence of electric flux energies for SU(2) gauge theory with twisted boundary conditions. The curves interpolate smoothly between the perturbative semiclassicalresults and the Confinement regime. On the basis of our results, we propose that the Confinement property might be caused by a class of non-dilute multi-instanton configurations.Comment: Postscript - paper.ps and sig_lt3c.eps (Fig 1). 25 pages of text and 1 figur

    The Hyperfine Splitting in Charmonium: Lattice Computations Using the Wilson and Clover Fermion Actions

    Full text link
    We compute the hyperfine splitting mJ/ψ−mηcm_{J/\psi}-m_{\eta_c} on the lattice, using both the Wilson and O(a)O(a)-improved (clover) actions for quenched quarks. The computations are performed on a 243×4824^3\times48 lattice at β=6.2\beta = 6.2, using the same set of 18 gluon configurations for both fermion actions. We find that the splitting is 1.83\err{13}{15} times larger with the clover action than with the Wilson action, demonstrating the sensitivity of the spin-splitting to the magnetic moment term which is present in the clover action. However, even with the clover action the result is less than half of the physical mass-splitting. We also compute the decay constants fηcf_{\eta_c} and fJ/ψ−1f^{-1}_{J/\psi}, both of which are considerably larger when computed using the clover action than with the Wilson action. For example for the ratio fJ/ψ−1/fρ−1f^{-1}_{J/\psi}/f^{-1}_{\rho} we find 0.32\err{1}{2} with the Wilson action and 0.48±30.48\pm 3 with the clover action (the physical value is 0.44(2)).Comment: LaTeX file, 8 pages and two postscript figures. Southampton Preprint: SHEP 91/92-27 Edinburgh Preprint: 92/51

    To what distances do we know the confining potential?

    Full text link
    We argue that asymptotically linear static potential is built in into the common procedure of extracting it from lattice Wilson loop measurements. To illustrate the point, we extract the potential by the standard lattice method in a model vacuum made of instantons. A beautiful infinitely rising linear potential is obtained in the case where the true potential is actually flattening. We argue that the flux tube formation might be also an artifact of the lattice procedure and not necessarily a measured physical effect. We conclude that at present the rising potential is known for sure up to no more than about 0.7 fm. It may explain why no screening has been clearly observed so far for adjoint sources and for fundamental sources but with dynamical fermions. Finally, we speculate on how confinement could be achieved even if the static potential in the pure glue theory is not infinitely rising.Comment: 16 pages, 5 figures. Additional arguments presented, a new figure and references adde

    Towards take-all control:A C-‐21β oxidase required for acylation of triterpene defence compounds in oat

    Get PDF
    Oats produce avenacins, antifungal triterpenes that are synthesized in the roots and provide protection against take-all and other soilborne diseases. Avenacins are acylated at the carbon-21 position of the triterpene scaffold, a modification critical for antifungal activity. We have previously characterized several steps in the avenacin pathway, including those required for acylation. However, transfer of the acyl group to the scaffold requires the C-21β position to be oxidized first, by an as yet uncharacterized enzyme. We mined oat transcriptome data to identify candidate cytochrome P450 enzymes that may catalyse C-21β oxidation. Candidates were screened for activity by transient expression in Nicotiana benthamiana. We identified a cytochrome P450 enzyme AsCYP72A475 as a triterpene C-21β hydroxylase, and showed that expression of this enzyme together with early pathway steps yields C-21β oxidized avenacin intermediates. We further demonstrate that AsCYP72A475 is synonymous with Sad6, a previously uncharacterized locus required for avenacin biosynthesis. sad6 mutants are compromised in avenacin acylation and have enhanced disease susceptibility. The discovery of AsCYP72A475 represents an important advance in the understanding of triterpene biosynthesis and paves the way for engineering the avenacin pathway into wheat and other cereals for control of take-all and other diseases
    • …
    corecore