96 research outputs found

    The Use of Synchrotron Radiation to study Overgrowth Phenomena in InAs/GaAs Nanostructures

    Get PDF
    This work focuses on the investigation of overgrowth phenomena in InAs/GaAs nanostructures using synchrotron radiation. Surface-sensitive grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence diffraction (GID) are applied to study shape, strain, and interdiffusion in self-organised grown nanostructures. The technique of anomalous x-ray diffraction at the weak (200) superstructure reflection enhances the chemical sensitivity of the measurements. For the investigation of (partially) buried nanostructures finite-element simulations (FEM) have been performed. The following sample systems were investigated: ((1)) Free-standing and buried InGaAs quantum dots: Free-standing In(x)Ga(1-x)As islands grown on GaAs (001) by molecular beam epitaxy (MBE) with a nominal concentration of x=0.5 have been investigated. Contrast variation close to the K edge of As by anomalous GID at the (200) superstructure reflection is used for a direct determination of the InAs concentration as a function of the lateral strain in the quantum dots (QDs). The evaluation of intensity mappings recorded in reciprocal space close to the (200) reflection together with atomic force micrographs (AFM) allows to attribute the strain and the InAs concentration to a certain height in the quantum dots. Thereby, a three-dimensional model of the strain and interdiffusion profile of the InGaAs QDs can be reconstructed. A discussion of measurements taken on buried InGaAs QDs and free-standing islands grown on the strain modulated surface of a buried QD layer shows the limits of this technique. ((2)) InGaAs quantum rings: The formation of nanoscopic InGaAs ring structures on a GaAs (001) substrate takes place when InAs quantum dots, grown by Stranski-Krastanov self-organisation, are covered by a thin layer of GaAs. The shape transformation into rings is governed by strain, diffusion and surface tension, quantities which are of importance to understand magneto-optical and electronic applications of the rings. GISAXS and GID is applied to characterise morphology and structural properties such as strain and chemical composition of the rings in three dimensions. From GISAXS the shape is found to be of circular symmetry with an outer radius of 26nm, a height of 1.5nm, and a hole in the middle, in good agreement with AFM measurements. The most surprising results are obtained from intensity mappings in reciprocal space close to the (220) and (2-20) reflection done in surface sensitive GID geometry. From a comparison of the intensity maps with FEM model calculations the InGaAs interdiffusion profile in the ring is determined. It strongly depends on the crystallographic orientation. In the ring a maximum InAs concentration of more than 80% along [1-10] is found while along [110] it is below 20%. This is explained by the preferred diffusion of In along [1-10]. ((3)) Quantum wires formed by cleaved edge overgrowth: Quantum wires (QWRs) fabricated by the cleaved edge overgrowth (CEO) technique use tensile strain to confine the charge carriers to one dimension. The cleaved edge of a pseudomorphically strained In0.1Al0.9As/Al0.33Ga0.67As superlattice (SL) is overgrown by a GaAs layer of 10nm thickness. The lateral charge carrier localisation in the overgrown layer is induced by the periodic strain modulation of the SL. Using GID this strain state of the system is determined. The strain modulation due to the overgrown superlattice occurs only within 3micron of the total wafer thickness of 150micron. The GID technique allows for a clear separation of the strain modulation in the cap layer and the superlattice underneath. It can be proved that the strain modulation in the GaAs cap layer is not of compositional origin but purely elastic with an average lattice parameter change of (0.8+-0.1)% with respect to relaxed GaAs. The strain profile obtained is confirmed by FEM model calculations.Die vorliegende Arbeit befasst sich mit methodischen Entwicklungen zur Untersuchung von Strukturänderungen beim Überwachsen von InAs/GaAs Nanostrukturen mittels Synchrotronstrahlung. Die oberflächenempfindlichen Methoden der Röntgen-Kleinwinkelstreuung (GISAXS) und der Röntgenbeugung unter streifendem Einfall (GID) ermöglichen es, Form, Verspannung und Interdiffusion in selbst-organisierten Nanostrukturen zu studieren. Die Methode der anomalen Röntgenbeugung am schwachen (200) Überstrukturreflex erhöht die chemische Empfindlichkeit der Messungen. Zur Untersuchung von (teilweise) vergrabenen Nanostrukturen wurden Finite-Elemente-Simulationsrechnungen (FEM) durchgeführt. Im Einzelnen wurden folgende Probensysteme untersucht: ((1)) Freistehende und vergrabene InGaAs Quantenpunkte: Anomale Röntgenbeugung am (200) Überstrukturreflex wurde zur Charakterisierung von freistehenden In0.5Ga0.5As Inseln, hergestellt mittels Molekularstrahlepitaxie (MBE), verwendet. Durch die Kontrastvariationsmessungen nahe der K Absorptionskante von As kann die InAs Konzentration direkt als Funktion des lateralen Gitterparameters der Quantenpunkte bestimmt werden. Die Auswertung von 2D-Kartierungen des reziproken Raumes nahe des (200) Reflexes zusammen mit Rasterkraftmikroskopie ermöglichen es, den lateralen Gitterparameter sowie die InAs Konzentration einer bestimmten Höhe im Quantenpunkt zuzuordnen. Daraus lässt sich ein 3D-Modell des Verspannungs- und Interdiffusionsprofiles der InGaAs Inseln rekonstruieren. Bei der Untersuchung von vergrabenen InGaAs Quantenpunkten und von freistehenden Inseln, die auf der verspannten Oberfläche einer vergrabenen Schicht von Quantenpunkten gewachsen wurden, stößt diese Methode jedoch an ihre Grenzen. ((2)) InGaAs Quantenringe: Die Bildung von nanoskopischen InGaAs Ringen auf einer GaAs (001) Oberfläche wird beobachtet, wenn InAs Inseln, hergestellt mittels Stranski-Krastanov-Selbstorganisation, mit einer dünnen Schicht GaAs überwachsen werden. Die Oberflächenmorphologie und strukturelle Eigenschaften, wie Verspannung und chemische Zusammensetzung, dieser Strukturen wurde mittels GISAXS und GID analysiert. Gemäss der GISAXS-Auswertung, die gut mit den AFM Untersuchungen übereinstimmt, besitzen die Ringe eine kreisförmige Symmetrie mit einem äußeren Radius von 26nm und einer Höhe von 1.5nm. Das überraschendste Ergebnis liefert die Analyse von Kartierungen des reziproken Raums in der Nähe des (220) and (2-20) Reflexes in GID-Geometrie. Die chemische Zusammensetzung des Rings, die durch den Vergleich der Messungen mit Modellrechnungen basierend auf FEM-Simulationen bestimmt wurde, hängt sehr stark von der kristallographischen Orientierung ab. In [1-10] Richtung wird eine maximale InAs Konzentration von über 80% beobachtet, während in [110] Richtung diese unter 20% liegt. Die erhöhte Diffusion von In in [1-10] Richtung erklärt diese Beobachtung. ((3)) Quantendräte hergestellt auf überwachsenen Spaltflächen: Die (110) Spaltfläche eines pseudomorph verspannten In0.1Al0.9As/Al0.33Ga0.67As Übergitters wurde mit einer 10nm dicken Schicht GaAs überwachsen. In diesem Fall wird die Beweglichkeit der Ladungsträger in der überwachsenen Schicht lateral durch die periodische, tensile Verspannung des Übergitters auf eine Dimension beschränkt (Quantendraht). Mittels GID lässt sich die Verspannungsmodulation, die nur innerhalb von 3micron der Gesamtdicke des Wafers von 150micron auftritt, quantisieren [im Mittel (0.8+-0.1)%]. Hierbei erlaubt GID eine klare Trennung der Verspannungsmodulation in der überwachsenen Schicht vom darunterliegenden Übergitter. Es kann gezeigt werden, dass die Verspannungsmodulation in der überwachsenen GaAs Schicht rein elastischer Natur ist und keine Interdiffusion stattfindet. Das Verspannungsprofil lässt sich durch FEM-Modellrechnungen bestätigen

    Concentration dependent pathways in spontaneous self-assembly of unilamellar vesicles

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We report on the structural dynamics underlying the formation of unilamellar vesicles upon mixing dilute solutions of anionic and zwitterionic surfactant solutions. The spontaneous self-assembly was initiated by rapid mixing of the surfactant solutions using a stopped-flow device and the transient intermediate structures were probed by time-resolved small-angle X-ray scattering. The initial surfactant solutions comprised of anionic lithium perfluorooctanoate and zwitterionic tetradecyldimethylamine oxide, where the mixtures form unilamellar vesicles over a wide range of concentrations and mixing ratios. We found that disk-like transient intermediate structures are formed at higher concentrations while more elongated forms such as cylinder-like and torus-like micelles are involved at lower concentrations. These differences are attributed to monomer addition mechanism dominating the self-assembly process when the initial concentration is well below the critical micellar concentration of the anionic surfactant, while at higher concentrations the process is governed by fusion of disk-like mixed micelles. This means that the pathway of vesicle formation is determined by the proximity to the critical micellar concentration of the more soluble component

    Tuning Structure and Rheology of Silica-Latex Nanocomposites with the Molecular Weight of Matrix Chains: A Coupled SAXS-TEM-Simulation Approach

    Full text link
    The structure of silica-latex nanocomposites of three matrix chain masses (20, 50, and 160 kg/mol of poly(ethyl methacrylate)) are studied using a SAXS/TEM approach, coupled via Monte Carlo simulations of scattering of fully polydisperse silica nanoparticle aggregates. At low silica concentrations (1 vol. %), the impact of the matrix chain mass on the structure is quantified in terms of the aggregation number distribution function, highest mass leading to individual dispersion, whereas the lower masses favor the formation of small aggregates. Both simulations for SAXS and TEM give compatible aggregate compacities around 10 vol. %, indicating that the construction algorithm for aggregates is realistic. Our results on structure are rationalized in terms of the critical collision time between nanoparticles due to diffusion in viscous matrices. At higher concentrations, aggregates overlap and form a percolated network, with a smaller and lighter mesh in the presence of high mass polymers. The linear rheology is investigated with oscillatory shear experiments. It shows a feature related to the silica structure at low frequencies, the amplitude of which can be described by two power laws separated by the percolation threshold of aggregates

    A phase separation in diluted Laponite suspensions: evidence of empty liquid and equilibrium gel states

    Full text link
    The relevance of anisotropic interactions in colloidal systems has recently emerged in the context of rational design of novel soft materials. Theoretical studies have predicted the possibility of a gas-liquid phase separation confined at low densities and the formation of empty liquids and equilibrium gels in low-valence systems. Here we provide experimental evidence of this scenario in Laponite, a complex colloidal clay with discotic shape and anisotropic interactions. We also report simulations of a patchy model for Laponite platelets, able to reproduce the observed experimental phase diagram and structural properties, confirming the crucial role of the reduced valence

    Rheo-acoustic gels: Tuning mechanical and flow properties of colloidal gels with ultrasonic vibrations

    Full text link
    Colloidal gels, where nanoscale particles aggregate into an elastic yet fragile network, are at the heart of materials that combine specific optical, electrical and mechanical properties. Tailoring the viscoelastic features of colloidal gels in real-time thanks to an external stimulus currently appears as a major challenge in the design of "smart" soft materials. Here we introduce "rheo-acoustic" gels, a class of materials that are sensitive to ultrasonic vibrations. By using a combination of rheological and structural characterization, we evidence and quantify a strong softening in three widely different colloidal gels submitted to ultrasonic vibrations (with submicron amplitude and frequency 20-500 kHz). This softening is attributed to micron-sized cracks within the gel network that may or may not fully heal once vibrations are turned off depending on the acoustic intensity. Ultrasonic vibrations are further shown to dramatically decrease the gel yield stress and accelerate shear-induced fluidization. Ultrasound-assisted fluidization dynamics appear to be governed by an effective temperature that depends on the acoustic intensity. Our work opens the way to a full control of elastic and flow properties by ultrasonic vibrations as well as to future theoretical and numerical modeling of such rheo-acoustic gels.Comment: 21 pages, 14 figure

    Structural anisotropy of directionally dried colloids

    Get PDF
    Aqueous colloidal dispersions of silica particles become anisotropic when they are dried through evaporation. This anisotropy is generated by a uniaxial strain of the liquid dispersions as they are compressed by the flow of water toward a solidification front. Part of the strain produced by the compression is relaxed, and part of it is stored and transferred to the solid. This stored elastic strain has consequences for the properties of the solid, where it may facilitate the growth of shear bands, and generate birefringence

    Characterization of hen phosvitin in aqueous salt solutions: Size, structure, and aggregation

    Get PDF
    Phosvitins is a key egg yolk protein and can often be found in food emulsions. It is highly phosphorylated and hence phosvitins contain a large number of negatively charged amino acid groups, for pH > pI. Due to the presence of these phophoserines, phosvitins bind to positively charged multivalent ions. Its amphipolar structure makes phosvitin also an efficient emulsion stabilizer. The ion binding and emulsifying abilities of phosvitins are influenced by environmental conditions such as pH and ionic strength. Various physicochemical properties of phosvitins such as size and charge under various conditions, and how they self-assemble via multivalent ions are not well-understood. To gain more insight into these physical characteristics, we performed high brilliance synchrotron small angle X-ray scattering (SAXS) on phosvitin solutions. The structure factor S(q) obtained from the SAXS profiles showed that the double layer interactions between charged phosvitin assemblies are strongly affected by pH and ionic strength of the buffer. The effects of multivalent ions (Mg2+, Fe3+) on the size and structure of phosvitin were also investigated. Our results revealed that the aggregation of phosvitin mediated by metal ions is induced by electrostatic attraction and only occurs beyond a threshold cation concentration, where phosvitin loses long-range electrostatic double layer repulsions. These findings help understanding the effects of metal ions and pH on phosvitin in more complex environments such as food emulsions

    Transitions sol-gel de colloïdes anisotropes sous champs de cisaillement, pression et ondes ultrasonores, caractérisées par diffusion de rayons x aux petits angles in-situ

    Get PDF
    L'objectif de ce travail est de caractériser aux échelles mésoscopiques, l'effet combiné des champs de pression, hydrodynamiques et ultrasonores sur les mécanismes de transition sol-gel de colloïdes anisotropes d'argiles lors de l'ultrafiltration tangentielle. Pour cela, des cellules de filtration ont été développées en intégrant une lame vibrante sollicitée à 20kHz par un générateur ultrasonore. Ces cellules de filtration permettent l'observation in-situ aux échelles nanométriques par diffusion de rayons X aux petits angles (SAXS). Différentes suspensions aqueuses d'argiles ont été étudiées : des argiles naturelles de montmorillonite Wyoming-Na et des argiles synthétiques de Laponite en présence ou non d'un peptisant le tetrasodium diphosphate (Na4P2O7). Par ailleurs l'effet des ultrasons sur le comportement rhéologique de suspensions a aussi été étudié.  L'effet du pré-cisaillement induit par la pompe du circuit de filtration et l'effet des ultrasons, sur les contraintes de cisaillement des suspensions de Laponite ont été mises en évidence. Les deux sollicitations réduisent les niveaux de contrainte et l'effet est plus marqué sur les suspensions avec peptisant (à interaction répulsive dominante) que sur les suspensions sans peptisant (à interaction attractive dominante). Les évolutions temporelles de la structure et de la concentration en colloïdes en fonction de la distance à la membrane ont ainsi été caractérisées sous différentes conditions de filtration et de sollicitations ultrasonores. Deux mécanismes principaux ont été mis en évidence lors de l'application des ultrasons : soit un mécanisme de fracturation ou d'intensification locale de l'écoulement lorsque les colloïdes forment un réseau dense très anisotrope (cas des suspensions de Montmorillonite et de Laponite sans peptisant), soit un mécanisme d'érosion des couches concentrées pour les colloïdes assemblés en structures ouvertes (cas des suspensions de Laponite avec peptisant)

    Impact of Crystal Structure and Particles Shape on the Photoluminescence Intensity of CdSe/CdS Core/Shell Nanocrystals

    Get PDF
    To study the influence of the chemical and crystalline composition of core/shell NCs on their photoluminescence (PL) the mean structural profile of a large ensemble of NCs has to be retrieved in atomic resolution. This can be achieved by retrieving the chemical profile of core/shell NCs using anomalous small angle x-ray scattering (ASAXS) in combination with the analysis of powder diffraction data recorded by wide angle x-ray scattering (WAXS). In the current synchrotron based study, we investigate CdSe/CdS core/shell NCs with different core dimensions by recording simultaneously ASAXS and WAXS spectra. The CdS shells are grown epitaxial on nominal spherical CdSe cores with core diameters from around 3.5–5.5 nm. Three different CdSe shell thicknesses are realized by depositing around 4, 6, and 8 monolayers (MLs) of CdSe. We reveal that the epitaxial core/shell structure depicts a chemical sharp interface, even after a post growth annealing step. With increasing NC diameter, however, the CdSe/CdS NCs deviate significantly from a spherical shape. Instead an elliptical particle shape with pronounced surface facets for the larger core/shell NCs is found. In combination with the powder diffraction data we could relate this anisotropic shape to a mixture of crystal phases within the CdSe core. The smallest CdSe cores exhibit a pure hexagonal wurtzite crystal structure, whereas the larger ones also possess a cubic zincblende phase fraction. This mixed crystal phase fractions lead to a non-spherical shell growth with different thicknesses along specific crystallographic directions: The long axes are terminated by basal crystal faces parallel either to the a- or c-axis, the short axes by “tilted” pyramidal planes. By combining these structural data with the measured PL quantum yield values, we can clearly connect the optical output of the NCs to their shape and to their shell thickness. Above 6 ML CdS shell-thickness no further increase of the PL can be observed, but for large aspect ratio values the PL is significantly decreased. The gained understanding of the internal crystal structure on CdSe/CdS NCs is general applicable for a precise tuning of the optical properties of crystalline core/shell NCs
    corecore